227 research outputs found
The usefulness of suppressive intra-ruminal drenching for control of gastrointestinal helminths in different cattle breeds
Cattle from Fn generations of Brahman (B), Hereford X Shorthorn (HS) and Brahman x HS (BX) that grazed as a single herd from birth to weaning and as separate sexes from weaning to 21 months of age were used to test the effectiveness of intra-ruminal drenching with oxfendazole both in controlling mixed infections of gastrointestinal helminths and in increasing gains as a result of worm control. About half the animals in each breed were treated every 3 weeks starting at about 3 weeks after birth whilst the other half acted as an untreated control
Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions
Various features of the mass yields in heavy ion collisions are studied. The
mass yields are discussed in terms of iterative one dimensional discrete maps.
These maps are shown to produce orbits for a monomer or for a nucleus which
generate the mass yields and the distribution of cluster sizes. Simple
Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the
approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov
exponents are discussed for the mass distribution. The self-similar property of
the Malthusian orbit offers a new variable for the study of scale invariance
using power moments of the mass distribution. Correlation lengths, exponents
and dimensions associated with scaling relations are developed. Fourier
transforms of the mass distribution are used to obtain power spectra which are
investigated for a behavior.Comment: 29 pages in REVTEX, 9 figures (available from the authors), RU-92-0
Dynamic Front Transitions and Spiral-Vortex Nucleation
This is a study of front dynamics in reaction diffusion systems near
Nonequilibrium Ising-Bloch bifurcations. We find that the relation between
front velocity and perturbative factors, such as external fields and curvature,
is typically multivalued. This unusual form allows small perturbations to
induce dynamic transitions between counter-propagating fronts and nucleate
spiral vortices. We use these findings to propose explanations for a few
numerical and experimental observations including spiral breakup driven by
advective fields, and spot splitting
On the Three-dimensional Central Moment Lattice Boltzmann Method
A three-dimensional (3D) lattice Boltzmann method based on central moments is
derived. Two main elements are the local attractors in the collision term and
the source terms representing the effect of external and/or self-consistent
internal forces. For suitable choices of the orthogonal moment basis for the
three-dimensional, twenty seven velocity (D3Q27), and, its subset, fifteen
velocity (D3Q15) lattice models, attractors are expressed in terms of
factorization of lower order moments as suggested in an earlier work; the
corresponding source terms are specified to correctly influence lower order
hydrodynamic fields, while avoiding aliasing effects for higher order moments.
These are achieved by successively matching the corresponding continuous and
discrete central moments at various orders, with the final expressions written
in terms of raw moments via a transformation based on the binomial theorem.
Furthermore, to alleviate the discrete effects with the source terms, they are
treated to be temporally semi-implicit and second-order, with the implicitness
subsequently removed by means of a transformation. As a result, the approach is
frame-invariant by construction and its emergent dynamics describing fully 3D
fluid motion in the presence of force fields is Galilean invariant. Numerical
experiments for a set of benchmark problems demonstrate its accuracy.Comment: 55 pages, 8 figure
Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids
We use a modified Shan-Chen, noiseless lattice-BGK model for binary
immiscible, incompressible, athermal fluids in three dimensions to simulate the
coarsening of domains following a deep quench below the spinodal point from a
symmetric and homogeneous mixture into a two-phase configuration. We find the
average domain size growing with time as , where increases
in the range , consistent with a crossover between
diffusive and hydrodynamic viscous, , behaviour. We find
good collapse onto a single scaling function, yet the domain growth exponents
differ from others' works' for similar values of the unique characteristic
length and time that can be constructed out of the fluid's parameters. This
rebuts claims of universality for the dynamical scaling hypothesis. At early
times, we also find a crossover from to in the scaled structure
function, which disappears when the dynamical scaling reasonably improves at
later times. This excludes noise as the cause for a behaviour, as
proposed by others. We also observe exponential temporal growth of the
structure function during the initial stages of the dynamics and for
wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
Nonlinear dynamics for vortex lattice formation in a rotating Bose-Einstein condensate
We study the response of a trapped Bose-Einstein condensate to a sudden
turn-on of a rotating drive by solving the two-dimensional Gross-Pitaevskii
equation. A weakly anisotropic rotating potential excites a quadrupole shape
oscillation and its time evolution is analyzed by the quasiparticle projection
method. A simple recurrence oscillation of surface mode populations is broken
in the quadrupole resonance region that depends on the trap anisotropy, causing
stochastization of the dynamics. In the presence of the phenomenological
dissipation, an initially irrotational condensate is found to undergo damped
elliptic deformation followed by unstable surface ripple excitations, some of
which develop into quantized vortices that eventually form a lattice. Recent
experimental results on the vortex nucleation should be explained not only by
the dynamical instability but also by the Landau instability; the latter is
necessary for the vortices to penetrate into the condensate.Comment: RevTex4, This preprint includes no figures. You can download the
complete article and figures at
http://matter.sci.osaka-cu.ac.jp/bsr/cond-mat.htm
Solar Wind Turbulence and the Role of Ion Instabilities
International audienc
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …