745 research outputs found

    Rapid Discovery of Pyrido[3,4- d ]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach

    Get PDF
    Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft mode

    Modification of EGF-Like Module 1 of Thrombospondin-1, an Animal Extracellular Protein, by O-Linked N-Acetylglucosamine

    Get PDF
    Thrombospondin-1 (TSP-1) is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-β-N-acetylglucosaminylation. Previously, O-β-N-acetylglucosamine (O-β-GlcNAc) was found on a threonine in the loop between the fifth and sixth cysteines of the 20th epidermal growth factor (EGF)-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with β-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da) and xylose (+132 Da) separately from modification with N-acetyl hexosamine (+203 Da). Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence 575CPPGYSGNGIQC586. These results demonstrate that O-β-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins

    Patients with suspected acute coronary syndrome in a university hospital emergency department: an observational study

    Get PDF
    BACKGROUND: It is widely considered that improved diagnostics in suspected acute coronary syndrome (ACS) are needed. To help clarify the current situation and the improvement potential, we analyzed characteristics, disposition and outcome among patients with suspected ACS at a university hospital emergency department (ED). METHODS: 157 consecutive patients with symptoms of ACS were included at the ED during 10 days. Risk of ACS was estimated in the ED for each patient based on history, physical examination and ECG by assigning them to one of four risk categories; I (obvious myocardial infarction, MI), II (strong suspicion of ACS), III (vague suspicion of ACS), and IV (no suspicion of ACS). RESULTS: 4, 17, 29 and 50% of the patients were allocated to risk categories I-IV respectively. 74 patients (47%) were hospitalized but only 19 (26%) had ACS as the discharge diagnose. In risk categories I-IV, ACS rates were 100, 37, 12 and 0%, respectively. Of those admitted without ACS, at least 37% could probably, given perfect ED diagnostics, have been immediately discharged. 83 patients were discharged from the ED, and among them there were no hospitalizations for ACS or cardiac mortality at 6 months. Only about three patients per 24 h were considered eligible for a potential ED chest pain unit. CONCLUSIONS: Almost 75% of the patients hospitalized with suspected ACS did not have it, and some 40% of these patients could probably, given perfect immediate diagnostics, have been managed as outpatients. The potential for diagnostic improvement in the ED seems large

    Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways

    Get PDF
    The identification and characterization of the components of individual signal transduction cascades, and advances in our understanding on how these biological signals are integrated in cancer initiation and progression, have provided new strategies for therapeutic intervention in solid tumors and hematological malignancies. To this end, pharmaceutical efforts have been directed to target different components of the Ras/Raf/MEK and PI3K/PKB pathways. This review article covers recent salient achievements in the identification and development of Raf, MEK, and PI3K inhibitors

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Phosphoinositide-3 kinase inhibition modulates responses to rhinovirus by mechanisms that are predominantly independent of autophagy

    Get PDF
    Human rhinoviruses (HRV) are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection. The PI3K inhibitor 3-MA, commonly used to inhibit autophagy, markedly reduced HRV-induced cytokine induction. Further investigation of potential targets of 3-MA and comparison of results using this inhibitor to a panel of general and class I-selective PI3K inhibitors showed that several PI3Ks cooperatively regulate responses to HRV. Targeting by siRNA of the autophagy proteins Beclin-1, Atg7, LC3, alone or in combination, or targeting of the autophagy-specific class III PI3K had at most only modest effects on HRV-induced cell signalling as judged by induction of proinflammatory cytokine production. Our data indicate that PI3K and mTOR are involved in induction of proinflammatory cytokines after HRV infection, and that autophagy has little role in the cytokine response to HRV or control of HRV replication

    The Female Athlete's Heart: Facts and Fallacies.

    Get PDF
    Purpose of the review For many years, competitive sport has been dominated by men. Recent times have witnessed a significant increase in women participating in elite sports. As most studies investigated male athletes, with few reports on female counterparts, it is crucial to have a better understanding on physiological cardiac adaptation to exercise in female athletes, to distinguish normal phenotypes from potentially fatal cardiac diseases. This review reports on cardiac adaptation to exercise in females. Recent findings Recent studies show that electrical, structural, and functional cardiac changes due to physiological adaptation to exercise differ in male and female athletes. Women tend to exhibit eccentric hypertrophy, and while concentric hypertrophy or concentric remodeling may be a normal finding in male athletes, it should be evaluated carefully in female athletes as it may be a sign of pathology. Although few studies on veteran female athletes are available, women seem to be affected by atrial fibrillation, coronary atherosclerosis, and myocardial fibrosis less than male counterparts. Summary Males and females exhibit many biological, anatomical, and hormonal differences, and cardiac adaptation to exercise is no exception. The increasing participation of women in sports should stimulate the scientific community to develop large, longitudinal studies aimed at a better understanding of cardiac adaptation to exercise in female athletes

    Does improved functional performance help to reduce urinary incontinence in institutionalized older women? a multicenter randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urinary incontinence (UI) is a major problem in older women. Management is usually restricted to dealing with the consequences instead of treating underlying causes such as bladder dysfunction or reduced mobility.</p> <p>The aim of this multicenter randomized controlled trial was to compare a group-based behavioral exercise program to prevent or reduce UI, with usual care. The exercise program aimed to improve functional performance of pelvic floor muscle (PFM), bladder and physical performance of women living in homes for the elderly.</p> <p>Methods</p> <p>Twenty participating Dutch homes were matched and randomized into intervention or control homes using a random number generator. Homes recruited 6–10 older women, with or without UI, with sufficient cognitive and physical function to participate in the program comprising behavioral aspects of continence and physical exercises to improve PFM, bladder and physical performance. The program consisted of a weekly group training session and homework exercises and ran for 6 months during which time the control group participants received care as usual. Primary outcome measures after 6 months were presence or absence of UI, frequency of episodes (measured by participants and caregivers (not blinded) using a 3-day bladder diary) and the Physical Performance Test (blinded). Linear and logistic regression analysis based on the Intention to Treat (ITT) principle using an imputed data set and per protocol analysis including all participants who completed the study and intervention (minimal attendance of 14 sessions).</p> <p>Results</p> <p>102 participants were allocated to the program and 90 to care as usual. ITT analysis (n = 85 intervention, n = 70 control) showed improvement of physical performance (intervention +8%; control −7%) and no differences on other primary and secondary outcome measures. Per protocol analysis (n = 51 intervention, n = 60 control) showed a reduction of participants with UI (intervention −40%; control −28%) and in frequency of episodes (intervention −51%; control −42%) in both groups; improvement of physical performance (intervention + 13%; control −4%) was related to participation in the exercise program.</p> <p>Conclusions</p> <p>This study shows that improving physical performance is feasible in institutionalized older women by exercise. Observed reductions in UI were not related to the intervention. [Current Controlled Trials ISRCTN63368283]</p

    Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator

    Get PDF
    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology
    corecore