269 research outputs found

    Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Get PDF
    This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O 3 )/hydrogen peroxide (H 2 O 2 )) and catalytic ozonation (ozone (O 3 )/manganese (Mn 2+ )) associated with dispersed air flotation process. The effect of independent factors such as O 3 concentration, pH and H 2 O 2 and Mn 2+ concentration was evaluated. For the flotation/O 3 /H 2 O 2 treatment, the significant variables (p ≤ 0.05) were: O 3 concentration (linear and quadratic effect), H 2 O 2 concentration linear and quadratic effect, pH values (linear and quadratic effect) and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O 3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O 3 /H 2 O 2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L -1 combined with higher concentrations of H 2 O 2 to 1071.5 mg L -1 . On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L -1 of H 2 O 2 . For flotation/ozonation catalyzed by Mn 2+ , it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L -1 of O 3 and pH 3.6

    Screening for hotspot mutations in PI3K, JAK2, FLT3 and NPM1 in patients with myelodysplastic syndromes

    Get PDF
    INTRODUCTION: Myelodysplastic syndromes encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, refractory cytopenia and a tendency to progress toward acute myeloid leukemia. The accumulation of genetic alterations is closely associated with the progression of myelodysplastic syndromes toward acute myeloid leukemia. OBJECTIVE: To investigate the presence of mutations in the points most frequent for mutations (hotspot mutations) in phosphatidylinositol-3-kinase (PI3K), Janus kinase 2 (JAK2), FMS-like tyrosine kinase 3 (FLT3) and nucleophosmin (NPM1), which are involved in leukemia and other cancers, in a population of Brazilian MDS patients. METHODS: Fifty-one myelodysplastic syndromes patients were included in the study. According to French-American-British classification, the patients were distributed as follows: 31 with refractory anemia, 8 with refractory anemia with ringed sideroblasts, 7 with refractory anemia with excess blasts, 3 with refractory anemia with excess blasts in transformation and 2 with chronic myelomonocytic leukemia. Bone marrow samples were obtained and screened for the presence of hotspot mutations using analysis based on amplification with the polymerase chain reaction, sequencing, fragment size polymorphisms or restriction enzyme digestion. All patients were screened for mutations at the time of diagnosis, and 5 patients were also screened at the time of disease progression. RESULTS: In the genes studied, no mutations were detected in the patients at the time of diagnosis. One patient with chronic myelomonocytic leukemia was heterozygous for a Janus kinase 2 mutation after disease progression. CONCLUSIONS: These results show that hotspot mutations in the PI3K, JAK2, FLT3 and NPM1 genes are not common in MDS patients; nevertheless, JAK2 mutations may be present in myelodysplasia during disease progression

    A novel substitution in NS5A enhances the resistance of hepatitis C virus genotype 3 to daclatasvir

    Get PDF
    Hepatitis C virus (HCV) genotype 3 presents a high level of both baseline and acquired resistance to direct-acting antivirals (DAAs), particularly those targeting the NS5A protein. To understand this resistance we studied a cohort of Brazilian patients treated with the NS5A DAA, daclatasvir and the nucleoside analogue, sofosbuvir. We observed a novel substitution at NS5A amino acid residue 98 [serine to glycine (S98G)] in patients who relapsed post-treatment. The effect of this substitution on both replication fitness and resistance to DAAs was evaluated using two genotype 3 subgenomic replicons. S98G had a modest effect on replication, but in combination with the previously characterized resistance-associated substitution (RAS), Y93H, resulted in a significant increase in daclatasvir resistance. This result suggests that combinations of substitutions may drive a high level of DAA resistance and provide some clues to the mechanism of action of the NS5A-targeting DAAs

    Degradation kinetics of organic matter in dairy industry wastewater by flotation/ozonation processes

    Get PDF
    This study evaluated the adjustment of four kinetic models and their respective parameters on data of dairy wastewater treatment by the physico-chemical process of flotation and ozonation. The experiment was implemented during the year 2014, with all the tests in triplicate. The treatments were carried out at different pH levels (3.6, 7.0 and 10.4), and flotation/ozonation was catalyzed by manganese (Mn2+) in neutral level (pH 7.0). Best removal efficiencies for chemical oxygen demand (COD) were obtained in acidic medium, with removals greater than 75% after 20 min of treatment. There was no significant difference with regards to addition of Mn2+on COD removal by the physico-chemical process. The kinetic models that best fit to the experimental data, for all treatments, were the asymptotic (residual) model and that of Chan and Chu. Treatment in acidic medium showed the highest values of the kinetic parameters for the adjusted model, obtaining a k coefficient equal to 0.2394 min-1for the asymptotic model and kinetic coefficient 1/ρ of 0.4816 min-1for the Chan and Chu model, both presenting a determination coefficient greater than 99%

    In vitro leishmanicidal, antibacterial and antitumour potential of anhydrocochlioquinone A obtained from the fungus Cochliobolus sp

    Get PDF
    The bioassay-guided fractionation of the ethyl acetate extract of the fungus Cochliobolus sp. highlighted leishmanicidal activity and allowed for anhydrocochlioquinone A (ANDC-A) isolation. MS, 1D and 2D NMR spectra of this compound were in agreement with those published in the literature. ANDC-A exhibited leishmanicidal activity with EC50value of 22.4 \uc2\ub5g/mL (44 \uce\ubcM) and, when submitted to the microdilution assay against Gram-positive and Gram-negative bacteria, showed a minimal inhibitory concentration against Staphylococcus aureus ATCC 25295 of 128 \uce\ubcg/mL (248.7 \uce\ubcM). It was also active against five human cancer cell lines, showing IC50values from 5.4 to 20.3 \uce\ubcM. ANDC-A demonstrated a differential selectivity for HL-60 (SI 5.5) and THP-1 (SI 4.3) cell lines in comparison with Vero cells and was more selective than cisplatin and doxorubicin against MCF-7 cell line in comparison with human peripheral blood mononuclear cells. ANDC-A was able to eradicate clonogenic tumour cells at concentrations of 20 and 50 \uce\ubcM and induced apoptosis in all tumour cell lines at 20 \uce\ubcM. These results suggest that ANDC-A might be used as a biochemical tool in the study of tumour cells biochemistry as well as an anticancer agent with durable effects on tumours

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
    corecore