13 research outputs found

    Impacts of considering climate variability on investment decisions in Ethiopia

    No full text
    Extreme interannual variability of precipitation within Ethiopia is not uncommon, inducing droughts or floods and often creating serious repercussions on agricultural and nonagricultural commodities. A dynamic climate module is integrated into an economy-wide model containing a detailed zonal level agricultural structure. This coupled climate-economic model is used to evaluate the effects of climate variability on prospective irrigation and infrastructure investment strategies, and the ensuing country-wide economy. The linkages between the dynamic climate module and the economic model are created by the introduction of a climate-yield factor (CYF), defined at the crop level and varied across Ethiopian zones. Nine sets of variable climate (VC) data are processed by the coupled model, generating stochastic wet and dry shocks, producing an ensemble of potential economic prediction indicators. Analysis of gross domestic product and poverty rate reveal a significant overestimation of the country's future welfare under all investment strategies when climate variability is ignored. The coupled model ensemble is further utilized for risk assessment to guide Ethiopian policy and planning. Copyright (c)2008 International Association of Agricultural Economists.

    Can mima-like mounds be Vertisol relics (Far North Region of Cameroon, Chad Basin)?

    No full text
    Non-anthropogenic earth mounds, defined as mima-like mounds in this study, have recently been observed in non-carbonate watersheds along the Sudano-Sahelian belt in the Chad Basin. In the Diamare piedmont (northern Cameroon) they are particularly well developed within stream networks. In less eroded areas, they occur as whaleback, flattened morphologies, or even as buried features. All these shapes are composed of clay-rich sediment associated with high proportions of secondary carbonate nodules and Fesingle bondMn micro-nodules. Their soil structure is prismatic to massive and vertical cracks are observed locally. Grain-size distributions emphasize the clay-rich nature of the sediment, with average clay contents of 32% ± 12.8% (n = 186), which is significantly higher than the clay content in the adjacent sediments in the landscape (mean = 10% ± 4%, n = 21). Moreover, high proportions of smectite characterize the soil, with average contents of 34 ± 7% (n = 25). At the micro-scale, the groundmass has a cross-striated b-fabric, with embedded smooth subangular quartz and feldspar grains of the silt-size fraction. All the characteristics point to altered vertic properties in the clay-rich sediment composing the mima-like mounds. Mima-like mounds are thus interpreted as degraded Vertisols. Compared to present-day Vertisols occurring in the piedmont, mima-like mounds are located upstream. It is thus proposed that the Vertisol areas were more extensive during a former and wetter period than the present-day. Subsequent changing climatic conditions increased erosion, revealing the gilgai micro-relief by preferential erosion in micro-lows rather than in micro-highs. Mima-like mounds of the Chad Basin might thus result from pedogenesis combined with later erosion. These local processes can be inherited from regional climatic variations during the Late Pleistocene-Holocene and likely be related to the African Humid Period
    corecore