145 research outputs found

    Formation and quenching mechanisms of the electron beam pumped (XeRb)+ ionic excimer in different buffer gases

    Get PDF
    The ionic excimer molecule XeRb+ is formed in an electron beam excited gas mixture of Xe, Rb, and a buffer gas. The formation and quenching mechanisms of ionic excimers are investigated by measuring the XeRb+fluorescence as a function of the gas composition and gas pressure. The formation of XeRb+ is achieved by a three‐body association reaction between Xe+, Rb, and a buffer gas atom. For the buffer gases He, Ne, or Ar the values of the important formationrate constants are determined from the observed fluorescence signal decay

    Vitality and the course of limitations in activities in osteoarthritis of the hip or knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the study was to determine whether psychological and social factors predict the course of limitations in activities in elderly patients with osteoarthritis of the hip or knee, in addition to established somatic and cognitive risk factors.</p> <p>Methods</p> <p>A longitudinal cohort study with a follow-up period of three years was conducted. Patients (N = 237) with hip or knee osteoarthritis were recruited from rehabilitation centers and hospitals. Body functions, comorbidity, cognitive functioning, limitations in activities and psychological and social factors (mental health, vitality, pain coping and perceived social support) were assessed. Statistical analyses included univariate and multivariate regression analyses. Psychological and social factors were added to a previously developed model with body functions, comorbidity and cognitive functioning.</p> <p>Results</p> <p>In knee OA, low vitality has a negative impact on the course of self-reported and performance-based limitations in activities, after controlling for somatic and cognitive factors. In hip OA, psychological and social factors had no additional contribution to the model.</p> <p>Conclusion</p> <p>Low vitality predicts deterioration of limitations in activities in elderly patients with osteoarthritis of the knee, in addition to established somatic and cognitive risk factors. However, the contribution of vitality is relatively small. Results of this study are relevant for the group of patients with knee or hip OA, attending hospitals and rehabilitation centers.</p

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2

    An enterprise engineering approach for the alignment of business and information technology strategy

    Full text link
    Information systems and information technology (IS/IT, hereafter just IT) strategies usually depend on a business strategy. The alignment of both strategies improves their strategic plans. From an external perspective, business and IT alignment is the extent to which the IT strategy enables and drives the business strategy. This article reviews strategic alignment between business and IT, and proposes the use of enterprise engineering (EE) to achieve this alignment. The EE approach facilitates the definition of a formal dialog in the alignment design. In relation to this, new building blocks and life-cycle phases have been defined for their use in an enterprise architecture context. This proposal has been adopted in a critical process of a ceramic tile company for the purpose of aligning a strategic business plan and IT strategy, which are essential to support this process. © 2011 Taylor & Francis.Cuenca, L.; Boza, A.; Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing. 24(11):974-992. https://doi.org/10.1080/0951192X.2011.579172S9749922411(1993). CIMOSA: Open System Architecture for CIM. doi:10.1007/978-3-642-58064-2Ang, J., Shaw, N., & Pavri, F. (1995). Identifying strategic management information systems planning parameters using case studies. International Journal of Information Management, 15(6), 463-474. doi:10.1016/0268-4012(95)00049-dAvison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223-246. doi:10.1016/j.jsis.2004.08.002Avgerou, & McGrath. (2007). Power, Rationality, and the Art of Living through Socio-Technical Change. MIS Quarterly, 31(2), 295. doi:10.2307/25148792Bergeron, F., Raymond, L., & Rivard, S. (2004). Ideal patterns of strategic alignment and business performance. Information & Management, 41(8), 1003-1020. doi:10.1016/j.im.2003.10.004Bernus, P., Nemes, L., & Schmidt, G. (Eds.). (2003). Handbook on Enterprise Architecture. doi:10.1007/978-3-540-24744-9Bleistein, S. J., Cox, K., Verner, J., & Phalp, K. T. (2006). B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Information and Software Technology, 48(9), 846-868. doi:10.1016/j.infsof.2005.12.001Buchanan, S., & Gibb, F. (1998). The information audit: An integrated strategic approach. International Journal of Information Management, 18(1), 29-47. doi:10.1016/s0268-4012(97)00038-8Buchanan, S., & Gibb, F. (2007). The information audit: Role and scope. International Journal of Information Management, 27(3), 159-172. doi:10.1016/j.ijinfomgt.2007.01.002Chen, D., & Vernadat, F. (2004). Standards on enterprise integration and engineering—state of the art. International Journal of Computer Integrated Manufacturing, 17(3), 235-253. doi:10.1080/09511920310001607087Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Chen, H.-M., Kazman, R., & Garg, A. (2005). BITAM: An engineering-principled method for managing misalignments between business and IT architectures. Science of Computer Programming, 57(1), 5-26. doi:10.1016/j.scico.2004.10.002Cuenca, L., Ortiz, A., & Vernadat, F. (2006). From UML or DFD models to CIMOSA partial models and enterprise components. International Journal of Computer Integrated Manufacturing, 19(3), 248-263. doi:10.1080/03081070500065841Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. IFIP Advances in Information and Communication Technology, 61-82. doi:10.1007/978-0-387-35505-4_5Gindy, N., Morcos, M., Cerit, B., & Hodgson, A. (2008). Strategic technology alignment roadmapping STAR® aligning R&D investments with business needs. International Journal of Computer Integrated Manufacturing, 21(8), 957-970. doi:10.1080/09511920801927148Goethals, F. G., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. A. (2007). The data building blocks of the enterprise architect. Future Generation Computer Systems, 23(2), 269-274. doi:10.1016/j.future.2006.05.004Greefhorst, D., Koning, H., & Vliet, H. van. (2006). The many faces of architectural descriptions. Information Systems Frontiers, 8(2), 103-113. doi:10.1007/s10796-006-7975-xGregor, S., Hart, D., & Martin, N. (2007). Enterprise architectures: enablers of business strategy and IS/IT alignment in government. Information Technology & People, 20(2), 96-120. doi:10.1108/09593840710758031Hartono, E., Lederer, A. L., Sethi, V., & Zhuang, Y. (2003). Key predictors of the implementation of strategic information systems plans. ACM SIGMIS Database, 34(3), 41-53. doi:10.1145/937742.937747Henderson, J. C., & Venkatraman, H. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472-484. doi:10.1147/sj.382.0472Hirschheim, R., & Sabherwal, R. (2001). Detours in the Path toward Strategic Information Systems Alignment. California Management Review, 44(1), 87-108. doi:10.2307/41166112Hoogervorst, J. A. P. (2009). Enterprise Governance and Enterprise Engineering. doi:10.1007/978-3-540-92671-9Johnson, A. M., & Lederer, A. L. (2010). CEO/CIO mutual understanding, strategic alignment, and the contribution of IS to the organization. Information & Management, 47(3), 138-149. doi:10.1016/j.im.2010.01.002JONKERS, H., LANKHORST, M., VAN BUUREN, R., HOPPENBROUWERS, S., BONSANGUE, M., & VAN DER TORRE, L. (2004). CONCEPTS FOR MODELING ENTERPRISE ARCHITECTURES. International Journal of Cooperative Information Systems, 13(03), 257-287. doi:10.1142/s0218843004000985King, W. R. (1978). Strategic Planning for Management Information Systems. MIS Quarterly, 2(1), 27. doi:10.2307/249104Leonard, J. (2007). Sharing a Vision: comparing business and IS managers’ perceptions of strategic alignment issues. Australasian Journal of Information Systems, 15(1). doi:10.3127/ajis.v15i1.299Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems Journal, 32(1), 198-221. doi:10.1147/sj.321.0198Luftman, J., Ben-Zvi, T., Dwivedi, R., & Rigoni, E. H. (2010). IT Governance. International Journal of IT/Business Alignment and Governance, 1(2), 13-25. doi:10.4018/jitbag.2010040102Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Newkirk, H. E., & Lederer, A. L. (2006). Incremental and Comprehensive Strategic Information Systems Planning in an Uncertain Environment. IEEE Transactions on Engineering Management, 53(3), 380-394. doi:10.1109/tem.2006.877446Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Noran, O. (2005). A systematic evaluation of the C4ISR AF using ISO15704 Annex A (GERAM). Computers in Industry, 56(5), 407-427. doi:10.1016/j.compind.2004.12.005Ortiz, A., Lario, F., & Ros, L. (1999). Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry, 40(2-3), 155-171. doi:10.1016/s0166-3615(99)00021-4Panetto, H., Baïna, S., & Morel, G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, 18(6), 679-698. doi:10.1007/s10845-007-0040-xPapp, R. (Ed.). (2001). Strategic Information Technology. doi:10.4018/978-1-87828-987-2Peñaranda, N., Mejía, R., Romero, D., & Molina, A. (2010). Implementation of product lifecycle management tools using enterprise integration engineering and action-research. International Journal of Computer Integrated Manufacturing, 23(10), 853-875. doi:10.1080/0951192x.2010.495136Reich, B. H., & Benbasat, I. (2000). Factors That Influence the Social Dimension of Alignment between Business and Information Technology Objectives. MIS Quarterly, 24(1), 81. doi:10.2307/3250980Sledgianowski, D., & Luftman, J. (2005). IT-Business Strategic Alignment Maturity. Journal of Cases on Information Technology, 7(2), 102-120. doi:10.4018/jcit.2005040107Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM Systems Journal, 31(3), 590-616. doi:10.1147/sj.313.0590Van Grembergen, W., & De Haes, S. (2010). A Research Journey into Enterprise Governance of IT, Business/IT Alignment and Value Creation. International Journal of IT/Business Alignment and Governance, 1(1), 1-13. doi:10.4018/jitbag.2010120401Xueying Wang, Xiongwei Zhou, & Longbin Jiang. (2008). A method of business and IT alignment based on Enterprise Architecture. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. doi:10.1109/soli.2008.468649

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
    corecore