164 research outputs found
CRDB: a database of charged cosmic rays
This paper gives a description of a new on-line database
http://lpsc.in2p3.fr/crdb and associated on-line tools (data selection, data
export, plots, etc.) for charged cosmic-ray measurements. The experimental
setups (type, flight dates, techniques) from which the data originate are
included in the database, along with the references to all relevant
publications. The database relies on the MySQL5 engine. The web pages and
queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and
table-sorter third-party libraries. In this first release, we restrict
ourselves to Galactic cosmic rays with Z<=30 and a kinetic energy per nucleon
up to a few tens of TeV/n. This corresponds to more than 200 different
sub-experiments (i.e., different experiments, or data from the same experiment
flying at different times) in as many publications. We set up a cosmic-ray
database and provide tools to sort and visualise the data. New data can be
submitted, providing the community with a collaborative tool to archive past
and future cosmic-ray measurements. Any help/ideas to further expand and/or
complement the database is welcome (please contact [email protected]).Comment: 13 pages, 6 figures: new Sect. 2.3 on Solar modulation parameters in
CRDB v2.1, see http://lpsc.in2p3.fr/crd
Random Forests and Networks Analysis
D. Wilson~\cite{[Wi]} in the 1990's described a simple and efficient
algorithm based on loop-erased random walks to sample uniform spanning trees
and more generally weighted trees or forests spanning a given graph. This
algorithm provides a powerful tool in analyzing structures on networks and
along this line of thinking, in recent works~\cite{AG1,AG2,ACGM1,ACGM2} we
focused on applications of spanning rooted forests on finite graphs. The
resulting main conclusions are reviewed in this paper by collecting related
theorems, algorithms, heuristics and numerical experiments. A first
foundational part on determinantal structures and efficient sampling procedures
is followed by four main applications: 1) a random-walk-based notion of
well-distributed points in a graph 2) how to describe metastable dynamics in
finite settings by means of Markov intertwining dualities 3) coarse graining
schemes for networks and associated processes 4) wavelets-like pyramidal
algorithms for graph signals.Comment: Survey pape
Neutron monitors and muon detectors for solar modulation studies: 2. time series
The level of solar modulation at different times (related to the solar
activity) is a central question of solar and galactic cosmic-ray physics. In
the first paper of this series, we have established a correspondence between
the uncertainties on ground-based detectors count rates and the parameter
(modulation level in the force-field approximation) reconstructed from
these count rates. In this second paper, we detail a procedure to obtain a
reference time series from neutron monitor data. We show that we can
have an unbiased and accurate reconstruction (). We also discuss the potential of Bonner spheres spectrometers and muon
detectors to provide time series. Two by-products of this calculation
are updated values for the cosmic-ray database and a web interface to
retrieve and plot from the 50's to today
(\url{http://lpsc.in2p3.fr/crdb}).Comment: 15 pages, 5 figures, 2 tables. AdSR, in press. Web interface to get
modulation parameter phi(t): new tab in http://lpsc.in2p3.fr/crd
Magnetodielectric coupling in Mn3O4
We have investigated the dielectric anomalies associated with spin ordering
transitions in the tetragonal spinel MnO, using thermodynamic,
magnetic, and dielectric measurements. We find that two of the three magnetic
ordering transitions in MnO lead to decreases in the temperature
dependent dielectric constant at zero applied field. Applying a magnetic field
to the polycrystalline sample leaves these two dielectric anomalies practically
unchanged, but leads to an increase in the dielectric constant at the
intermediate spin-ordering transition. We discuss possible origins for this
magnetodielectric behavior in terms of spin-phonon coupling. Band structure
calculations suggest that in its ferrimagnetic state, MnO corresponds
to a semiconductor with no orbital degeneracy due to strong Jahn-Teller
distortion.Comment: 6 pages, 7 figure
Mild hypoglycemia is independently associated with increased mortality in the critically ill
Introduction: Severe hypoglycemia (blood glucose concentration (BG) < 40 mg/dL) is independently associated with an increased risk of mortality in critically ill patients. The association of milder hypoglycemia (BG < 70 mg/dL) with mortality is less clear.Methods: Prospectively collected data from two observational cohorts in the USA and in The Netherlands, and from the prospective GLUCONTROL trial were analyzed. Hospital mortality was the primary endpoint.Results: We analyzed data from 6,240 patients: 3,263 admitted to Stamford Hospital (ST), 2,063 admitted to three institutions in The Netherlands (NL) and 914 who participated in the GLUCONTROL trial (GL). The percentage of patients with hypoglycemia varied from 18% to 65% among the different cohorts. Patients with hypoglycemia experienced higher mortality than did those without hypoglycemia even after stratification by severity of illness, diagnostic category, diabetic status, mean BG during intensive care unit (ICU) admission and coefficient of variation (CV) as a reflection of glycemic variability. The relative risk (RR, 95% confidence interval) of mortality associated with minimum BG < 40, 40 to 54 and 55 to 69 mg/dL compared to patients with minimum BG 80 to 109 mg/dL was 3.55 (3.02 to 4.17), 2.70 (2.31 to 3.14) and 2.18 (1.87 to 2.53), respectively (all P < 0.0001). The RR of mortality associated with any hypoglycemia < 70 mg/dL was 3.28 (2.78 to 3.87) (P < 0.0001), 1.30 (1.12 to 1.50) (P = 0.0005) and 2.11 (1.62 to 2.74) (P < 0.0001) for the ST, NL and GL cohorts, respectively. Multivariate regression analysis demonstrated that minimum BG < 70 mg/dL, 40 to 69 mg/dL and < 40 mg/dL were independently associated with increased risk of mortality for the entire cohort of 6,240 patients (odds ratio (OR) (95% confidence interval (CI)) 1.78 (1.39 to 2.27) P < 0.0001), 1.29 (1.11 to 1.51) P = 0.0011 and 1.87 (1.46 to 2.40) P < 0.0001) respectively.Conclusions: Mild hypoglycemia was associated with a significantly increased risk of mortality in an international cohort of critically ill patients. Efforts to reduce the occurrence of hypoglycemia in critically ill patients may reduce mortality. © 2011 Krinsley et al. licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Pulmonary hypertension in chronic obstructive pulmonary disease
Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies
Risks management and cobots. Identifying critical variables
Trabajo presentado en: 29th European Safety and Reliability Conference (ESREL), 22–26 September 2019, HannoverA collaborative robot or a "Cobot" is the name of a robot that can share a workspace with operators
in the absence of a protective fence or with only partial protection. They represent a new and expanding sector of
industrial robotics. This investigation draws from the latest international rules and safety parameters related to
work with collaborative robots. Its detailed research is motivated by the design of a collaborative industrial robot
system, hazard elimination, risk reduction, and different collaborative operations, such as power and force
limiting, collaborative operation design, and end-effector safety requirements, among others. The purpose of our
study is to analyze the most important variables that must be controlled in accordance with the desired use of the
Cobot, according to ISO / TS 15066, ISO / TR 20218-1and some other generic safety regulations on machines and
industrial robots. A series of observations and appreciations on the use of the Cobot will also be presented
Application of a general discrete adjoint method for draft tube optimization
ABSTRACT: Automatic optimization is becoming increasingly important in turbomachinery design to improve the performance of machine components and Evolutionary Algorithms (EAs) play a very important role in this task. The main drawback of EAs is the large number of evaluations that are required to obtain an "optimal" result. Consequently, in order to keep the computational time in an affordable frame for design purposes, either the mesh size has to be limited, thus reducing the resolution of the flow phenomena, or the number of free parameters must be kept small. Adjoint optimization does not suffer from these restrictions, i.e. the optimization time is not affected by the number of parameters. The computational effort for the adjoint method scales only with the grid size and is usually in the range of two times the CFD simulation alone. In this paper, a discrete adjoint method based on a coupled pressure based RANS solver is presented and applied to draft tube optimization. The adjoint solver is general and can therefore deal with any turbulence model supported by the CFD solver as well as any boundary condition, including mixing planes and mesh interfaces needed for multi-stage simulations. Furthermore, there is no restriction on the choice of objective function. The adjoint method is first applied to a baseline draft tube geometry and then again to its EA optimized geometry where the objective function was the minimization of losses in the draft tube. To reduce the complexity for this proof of concept but still including multiple operating points in the optimization, only peak efficiency and full-load were optimized simultaneously. The adjoint optimization can significantly improve the draft tube performance in both cases (baseline and EA optimization). The interplay between local and global optimization seems to be a promising strategy to find optimal geometries for multi-operating point/multi-objective optimization and will be further investigated in subsequent research
Electronic structure and transport in thermoelectric compounds AZn_2Sb_2 (A = Sr, Ca, Yb, Eu)
The AZn_2Sb_2 (P¯3m1, A = Ca, Sr, Eu, Yb) class of Zintl compounds has shown high thermoelectric efficiency (zT ~ 1) and is an appealing system for the development of Zintl structure–property relationships. High temperature transport measurements have previously been conducted for all known compositions except for SrZn_2Sb_2; here we characterize polycrystalline SrZn_2Sb_2 to 723 K and review the transport behavior of the other compounds in this class. Consistent with the known AZn_2Sb_2 compounds, SrZn_2Sb_2 is found to be a hole-doped semiconductor with a thermal band gap ~ 0.27 eV. The Seebeck coefficients of the AZn2Sb2 compounds are found to be described by similar effective mass (m* ~ 0.6 m_e). Electronic structure calculations reveal similar m* is due to antimony p states at the valence band edge which are largely unaffected by the choice of A-site species. However, the choice of A-site element has a dramatic effect on the hole mobility, with the room temperature mobility of the rare earth-based compositions approximately double that found for Ca and Sr on the A site. This difference in mobility is examined in the context of electronic structure calculations
GATE : a simulation toolkit for PET and SPECT
Monte Carlo simulation is an essential tool in emission tomography that can
assist in the design of new medical imaging devices, the optimization of
acquisition protocols, and the development or assessment of image
reconstruction algorithms and correction techniques. GATE, the Geant4
Application for Tomographic Emission, encapsulates the Geant4 libraries to
achieve a modular, versatile, scripted simulation toolkit adapted to the field
of nuclear medicine. In particular, GATE allows the description of
time-dependent phenomena such as source or detector movement, and source decay
kinetics. This feature makes it possible to simulate time curves under
realistic acquisition conditions and to test dynamic reconstruction algorithms.
A public release of GATE licensed under the GNU Lesser General Public License
can be downloaded at the address http://www-lphe.epfl.ch/GATE/
- …