1,066 research outputs found

    Children's scale errors: A by-product of lexical development?

    Get PDF
    Scale errors occur when young children seriously attempt to perform an action on an object which is impossible due to its size. Children vary substantially in the incidence of scale errors with many factors potentially contributing to these differences, such as age and the type of scale errors. In particular, the evidence for an inverted U-shaped curve of scale errors involving the child's body (i.e., body scale errors), which would point to a developmental stage, is mixed. Here we re-examine how body scale errors vary with age and explore the possibility that these errors would be related to the size and properties of children's lexicon. A large sample of children aged 18-30 months (N = 125) was tested in a scale error elicitation situation. Additionally, parental questionnaires were collected to assess children's receptive and expressive lexicon. Our key findings are that scale errors linearly decrease with age in childhood, and are more likely to be found in early talkers rather than in less advanced ones. This suggests that scale errors do not correspond to a developmental stage, and that one determinant of these errors is the speed of development of the linguistic and conceptual system, as a potential explanation for the individual variability in prevalence

    Being proven wrong elicits learning in children - but only in those with higher executive function skills

    Get PDF
    This study investigated whether prompting children to generate predictions about an outcome facilitates activation of prior knowledge and improves belief revision. 51 children aged 9-12 were tested on two experimental tasks in which generating a prediction was compared to closely matched control conditions, as well as on a test of executive functions (EF). In Experiment 1, we showed that children exhibited a pupillary surprise response to events that they had predicted incorrectly, hypothesized to reflect the transient release of noradrenaline in response to cognitive conflict. However, children\u27s surprise response was not associated with better belief revision, in contrast to a previous study involving adults. Experiment 2 revealed that, while generating predictions helped children activate their prior knowledge, only those with better inhibitory control skills learned from incorrectly predicted outcomes. Together, these results suggest that good inhibitory control skills are needed for learning through cognitive conflict. Thus, generating predictions benefits learning - but only among children with sufficient EF capacities to harness surprise for revising their beliefs. (DIPF/Orig.

    Insulation monitoring in ungrounded electrical system for more electric aircrafts

    Get PDF
    Electrification in transportation is gathering pace with several initiative like the more electric aircraft. In order to improve the availability of electrical power systems in aircraft applications, the use of an ungrounded IT system is proposed with the benefit of guaranteeing operation even in the case of a single insulation fault to ground. An insulation monitoring device is proposed to continuously monitor the insulation resistance and provide support for any preventative maintenance. Extensive simulations and experimental validations are presented to support the concept

    Reasons and Means to Model Preferences as Incomplete

    Full text link
    Literature involving preferences of artificial agents or human beings often assume their preferences can be represented using a complete transitive binary relation. Much has been written however on different models of preferences. We review some of the reasons that have been put forward to justify more complex modeling, and review some of the techniques that have been proposed to obtain models of such preferences

    Storage and retrieval in a paired-associate task

    Full text link

    New onset neuromyelitis optica in a young Nigerian woman with possible antiphospholipid syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Devic's neuromyelitis optica is an inflammatory demyelinating disease that targets the optic nerves and spinal cord. It has a worldwide distribution and distinctive features that distinguish it from multiple sclerosis. There has been no previous report of neuromyelitis optica from our practice environment, and we are not aware of any case associated with antiphospholipid syndrome in an African person.</p> <p>Case presentation</p> <p>We report the case of a 28-year-old Nigerian woman who presented with neck pain, paroxysmal tonic spasms, a positive Lhermitte's sign and spastic quadriplegia. She later developed bilateral optic neuritis and had clinical and biochemical features of antiphospholipid syndrome. Her initial magnetic resonance imaging showed a central linear hyperintense focus in the intramedullary portion of C2 to C4. Repeat magnetic resonance imaging after treatment revealed resolution of the signal intensity noticed earlier.</p> <p>Conclusion</p> <p>Neuromyelitis optica should be considered in the differential diagnoses of acute myelopathy in Africans. We also highlight the unusual association with antiphospholipid syndrome. Physicians should screen such patients for autoimmune disorders.</p

    Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies

    Get PDF
    A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers. High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites. The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution. High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions
    corecore