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Abstract

Infants extend their repertoire of behaviours from initially simple behaviours with single objects to complex behaviours
dealing with spatial relationships among objects. We are interested in the mechanisms underlying this development
in order to achieve similar development in artificial systems. One mechanism is sensorimotor diɼerentiation, which
allows one behaviour to become altered in order to achieve a diɼerent result; the old behaviour is not forgotten, so
diɼerentiation increases the number of available behaviours. Diɼerentiation requires the learning of both sensory
abstractions and motor programs for the new behaviour; here we focus only on the sensory aspect: learning to
recognise situations in which the new behaviour succeeds. We experimented with learning these situations in a
realistic physical simulation of a robotic manipulator interacting with various objects, where the sensor space includes
the robot arm position data and a Kinect-based vision system. The mechanism for learning sensory abstractions for
a new behaviour is a component in the larger enterprise of building systems which emulate the mechanisms of infant
development.
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1. Introduction

In the period from six months of age through to two years, human in-
fants undergo significant development in their skills and understand-
ing relating to physical world objects and their manipulation. At six
months they mostly deal with only one object at a time, performing
simple actions such as sucking or banging; by two years they are ca-
pable of solving relatively complex problems which require them to
put multiple objects in a spatial relationship, for example using sim-
ple tools. We are interested in building artificial systems which could
mimic the mechanisms underlying infants’ development of these skills
and thereby achieve some understanding of the physical world. In a
survey of this development, we have outlined six of these mechanisms
[1], and the present paper (focussing on one mechanism) is part of
the endeavour to create a complete working implementation of these
mechanisms in an agent which could exhibit autonomous development
through embodiment in a robot.

Observations of infants show that, at any particular age, they possess
a repertoire of behaviours or manual skills which they apply to various
objects or surfaces they encounter [2, 3]. Each such behaviour could
be seen as roughly analogous to a planning operator in Artificial In-
telligence, because there are situations which make them likely to be
executed (like the precondition of a planning operator), and expected
eɼects (postcondition), as well as somemotor control program describ-
ing the behaviour executed. Piagetian theory calls such units schemas,
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and we use this terminology here; other psychologists have similar units
called “sensorimotor processes” [4], “skills” [5], or “perception-action
routines” [3]. The repertoire of schemas which infants possess by two
years is much larger and more sophisticated than the repertoire they
have at six months. The focus of our work is on how new schemas
are acquired. Within this problem there are the problems of identifying
when a new schema should be created, and then learning new pre-
condition, postcondition, and motor program for the new schema. In
this paper, we focus on learning the precondition for a new schema.
This is a particularly interesting problem in the case of “means-end be-
haviours”; these are problem solving situations where the infant cannot
immediately achieve its goal, and somust sequence two actions, where
the first facilitates the next [6], for example a toy may be obstructed by
a box, and the infant may need to push the box out of the way before
being able to take possession of the toy. Figure 1 illustrates such a
situation.

Piaget believed that it is through learning means-end behaviours that
infants begin to learn about important spatial relationships between ob-
jects [7]. The precondition of a schema (for a means-end behaviour)
must capture the spatial relationship between objects which deter-
mines where the behaviour works or does not work. In learning pre-
conditions the infant is learning new important abstractions over its
sensor space. This can change how an infant understands a scene
because the infant can begin to see things at a higher level of abstrac-
tion, noticing precisely those spatial relationships which are important
in determining what object manipulations are possible (by itself or other
agents). This is an important part of the development of an understand-
ing of the world.

Both, sensory and motor aspects are crucial aspects of infancy and
ongoing development in general. These aspects are very much in-
tertwined in humans. In computational systems, sensory and motor
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Figure 1. This figure on the left illustrates a situation where an infant desires a
toy which is obstructed by a box. The figure on the right shows the
same situation after the infant removed the box and is now able to
retrieve the desired toy.

aspects can also influence and bootstrap each other; however, unlike
biological systems, artificial systems can choose to focus on either one
independently. In this work we focus on the sensory part, but we also
investigate the motor side in parallel in our research group.
In this work we experimented with the following two means-end be-
haviours: (i) pushing aside an obstacle to see if it would convert an
obstructed scenario to and unobstructed one; (ii) pulling a supporting
object to bring the supported object into reach (i.e. to bring the ob-
ject on top into reach as in Fig. 2). In each case, we investigate how
well we can learn the preconditions describing the spatial relationship
among a pair of objects which determines whether or not the means-
end behaviour will work. We did this using an agent which controls a
simulated robot arm with 6 Degrees of Freedom in a physically realistic
3D World, and a Kinect-based vision system. For this vision system
we also simulate the Kinect, including the noise of real Kinect devices.
Of course it would be relatively easy for a programmer to simply code
in the required spatial relationship so that an agent would not have to
learn it, however our aim is to construct an agent which can learn world
knowledge for itself. Such an agent should hopefully be able to extend
its own knowledge, and learn things the designer might not have fore-
seen the need for. In particular we would like to endow robots with the
capability to learn about important spatial relationships (determining the
success of manipulation actions) which the designer might not have
foreseen the need for. Our analysis of infant development (focussing
on interaction with the physical world) [1] suggests that infants do pos-
sess a diɼerentiation mechanism for spawning new schemas, and we
see this capability as an essential component of any agent which would
be able to display ongoing autonomous development.
To the best of our knowledge, this is the first attempt to build an arti-
ficial system to tackle the problem of the acquisition of preconditions
for the two means-end behaviours above (removing the obstacle, and
pulling the support). We believe that getting robots to do the kinds of
tasks which infants do is an important area in developmental robotics
because these are tasks which we know are part of a developing trajec-
tory, leading to more sophisticated tasks which build on them. Our re-
sults suggest that (1) it is possible for a robotic system to autonomously
learn its own sensor abstractions for new behaviours, and (2) that rapid
learning of these abstractions can be facilitated if the agent adopts an
active learning approach to selecting new examples.
There is a closely related and recent work by Rosman and Ramamoor-
thy [8] which learns spatial relationships between objects, such as “on”
and “adjacent”. However this is learning the spatial relationships in a
human-supervised fashion, using humans to pre-label a set of scenes

with the object relations seen in the scene. We diɼer in the philosophy
of our approach because we believe that the robot should only learn
relationships which are practically meaningful for it (e.g. those relation-
ships that determine when a behaviour will be successful or not). In
contrast to our work, [8] imposes a concept (e.g. on top) which a hu-
man believes to be useful for a robot, and the particular instantiation of
that concept is decided by the human, rather than with reference to the
robot’s own action in the world. We instead believe that the concepts
which will be useful for a robot are likely to be those that emerge from
its own interactions with the world. This is also related to Sutton’s “veri-
fication principle” [9, 10]; the relationship our system learns is grounded
in its own experience, and hence it can always revisit that and relearn it
if necessary (e.g. if its manipulation ability changes, such that a diɼer-
ent variant of the relationship is needed now). In contrast, knowledge
given by a human is not verifiable by the agent, and is just given as is
with no opportunity for adjusting the idea. In our system training data
can be gathered in an online fashion as the robot executes actions and
sees the eɼects, furthermore the relationships which the robot learns
are not limited by those decided by a human; whenever the robot needs
to find situations in which a means-end behaviour works or does not,
it can begin learning a classifier that will appropriately discriminate the
situations.
In Section II, we review the background literature on infants’ acquisition
of means-end behaviours, to motivate our computational work. Sec-
tion III gives an overview of our computational work and the experi-
ments carried out. Section IV presents the results of our experiments.
Section V discusses the implications and significance of these results,
and compares with related works. Section VI concludes and outlines
directions for future work.

2. Motivation

Young infants start life with a limited set of repetitive behaviours, but as
they progress through the first two years their repertoire of behaviours
grows rapidly [1, 2]. The initial behaviours include “rhythmical stereo-
typical behaviours” which are either present at birth or seem to emerge
as by-products of the normal maturation of motor control circuits [11].
These behaviours include “arm waving” (flapping of the arm vertically
from the shoulder), bending and extending the wrist, flexion and ex-
tension of the fingers, etc. It is surmised that these behaviours may
be opportunistically used by infants for the purpose of bootstrapping
further development, for example by encouraging actions which will
at some point lead to interesting results. In addition to the rhythmical
stereotypical behaviours, there are the basic object behaviours such
as looking at an object, and grasping it, and performing basic actions
such as mouthing it or banging it on a surface. These behaviours are
typically well established by six months [12, p. 174],[13].
During the period from 6 to 24 months, there is a rapid growth in the
infant’s repertoire of behaviours. Following the terminology of Piaget
[14], we can describe these infant behaviours using the term schemas
which have roughly the same role as planning operators in typical AI
systems. A schema has a precondition (describing situations where
it is expected to be applicable), an action (or motor program), and a
prediction (describing the expected result). The growth in the infant’s
behavioural repertoire can then be described as the addition of new
schemas to its repertoire. The addition of schemas may be driven by
some underlying developmental mechanisms [1], one of which is Sen-
sorimotor differentiation: When an existing schema is executed and
it produces an unexpected result, this can start a process which at-
tempts to discover how to reproduce this new result; the process must
change both the old motor program as well as the precondition and pre-
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Figure 2. This figure illustrates how a new behaviour can be acquired by the diɼerentiation mechanism. The original behaviour (initial schema) simply pulls a cloth/tray
in order to bring it close. The new behaviour pulls the cloth/tray in order to bring the item supported by it closer. The new schema acquired will need to
adjust its motor behaviour, and also to learn the situations in which this new behaviour can be expected to work.

diction of the old schema. Sensorimotor diɼerentiation thus describes
how one schema can spawn a new schema.
An example of this process resulting in the emergence of a new schema
has been studied by Willatts [6], who studied the acquisition of the
schema for pulling a cloth in order to bring an object resting on it within
reach (where grabbing this object is the goal). Figure 2 illustrates this
process. Willatts showed that during the 6 to 8 months period there is a
gradual transition: initially the infant sees the goal (object out of reach)
and means (cloth), and does not know the possibility for retrieval, so
the infant plays with the means object (cloth) for its own sake, but in
grabbing the cloth the object is brought closer. This accidental retrieval
gradually becomes intentional. Furthermore, by 9 months it was shown
that infants can adjust the means action (cloth pull) as appropriate to
the goal, in situations where the goal may be far or near. The new pulling
behaviour becomes quite diɼerent to the original retrieval behaviour; the
cloth will be pulled further, even behind the infant (this is the learning of
a newmotor program); furthermore, the infant learns to discriminate the
situations in which this cloth pulling is likely to work (this is the learning
of a new sensor abstraction).
A further example which we have investigated concerns removing an
obstacle (see also Piaget [2]): A young infant has a behaviour for wav-
ing an object back and forth on a table surface. At some later point,
this behaviour becomes diɼerentiated to produce a behaviour for de-
liberately displacing an object to one side in order to retrieve a visible
toy behind it (see Figure 1). Again, the new behaviour is diɼerent as it
becomes tailored to the new goal, and the situations where it is likely
to work are learnt.
Piaget believed that it is through learning means-end behaviours such
as these that infants begin to learn about important spatial relationships
between objects [7]. This is an important part of the development of
an understanding of the world because it helps an infant to understand

what it observes at a higher level of abstraction, noticing precisely those
spatial relationships which are important in determining what object ma-
nipulations are possible (by itself or other agents). The importance of
these acquisitions for cognitive development motivates our interest in
attempting to build artificial systems which could autonomously make
similar acquisitions.

3. System Overview

This section first briefly describes how the system detailed in this paper
fits into the larger enterprise of building artificial systems which acquire
new behaviours following a similar developmental trajectory to infants
(Sec. 3.1). Following this we detail our simulated robotic arm, vision
system, and experimental setup (Sec. 3.2, 3.3), followed by the exper-
iments run and the learning approach used (Sec. 3.4).

3.1. Overview of the Developing System

The work reported in this paper is just one component in our develop-
ing system, which includes mechanisms of development allowing new
sensorimotor schemas to be added to the infant’s repertoire. We will
give a brief overview in order to illustrate where the precondition learn-
ing fits into the full system. We first explain some terms: an “action” in
our system is a skilled motor program which typically achieves some
goal, for example, reaching for and picking up any of various objects, or
pulling an object. A “relationship” between objects in this paper refers
to a spatial arrangement of the objects; in particular we focus on the
spatial relationship of one being on-top of the other such that pulling
the lower one will make the upper one also move. Note that we are not

190

Brought to you by | University of Aberdeen
Authenticated

Download Date | 8/28/18 1:20 PM



PALADYN Journal of Behavioral Robotics

interested in the concept “on top” as a human adult might think of it,
rather we are interested in the spatial relationship which exists if the two
objects are to move together, so it is a very practical relationship which
is grounded in a particular manipulation action. In our system a schema
⟨prec, M, pred , G⟩ has a precondition prec , a motor program M , a
prediction pred , and also a postcondition G (which can be viewed as
the goal this individual schema is trying to achieve). A postcondition
(or goal) is necessary so that some schemas know when to terminate,
and also because new schemas typically start life with a new goal and
have to tailor their motor and sensor aspects to appropriately serve the
goal. On a higher level in the framework, these schemas can be used
and put into a sequence by a planner in order to achieve complex high-
level goals. When considering such a sequence of planned actions, we
would refer to the “goal” of an individual schema as a “subgoal”. The
motor program controls the robot arm to achieve this subgoal. The sim-
ulated infant maintains a library of schemas some of which are provided
initially, and some of which may subsequently be added to or modified.
The initial schemas include behaviours such as look-at, reach, grasp,
drop, etc. This is not to suggest that these behaviours are innate in in-
fants, they are just starting behaviours for our system; we do not want
our system to have to learn everything which an infant learns, instead
we want it to start at a state with some competences/behaviours and
then learn from there.
The agent analyses the current state of the world and produces a plan-
ning tree of future possibilities for its own actions; this tree is currently
limited to a depth of three, but in the future this could be changed to
a more dynamic depth based on the accuracies of the schema pre-
dictions. The planning tree shows possible chains of actions. To find
these, when analysing the current state, the agent checks for each
available schema whether its precondition is met, i.e. whether it is ex-
pected to achieve its goal when executed in the current state, and adds
it to the tree if it is expected to be successful. The agent then uses a
schema’s predictor to predict the next state of each added schema and
adds a second layer of actions by analysing the predicted states. This
is repeated until the depth limit is reached. The first level of the tree
now contains every schema whose precondition is satisfied currently;
the second level contains every schema which is predicted to be exe-
cutable thereafter, and so on.
The agent, hence, understands the scene in terms of possibilities with
regard to existing schemas. Figure 3 illustrates the routine the agent
continuously loops through:

1. Computing the tree of executable schemas, where executable
means they are expected to have a chance to achieve their goal.

2. Selecting one of the first level schemas for execution, where this
selection can be random or guided by intrinsic motivation or a
planning algorithm trying to achieve a not directly achievable
goal.

3. Updating the agent’s knowledge based on the results of that ex-
ecution (which may include the harvesting of a new schema).

If the result of the execution is a slight variation on the predicted result
(slight here means that the subsequent possibilities in the tree are not
aɼected by this change), then the prediction of that schema is updated.
However, if the result of the execution causes an unexpected change in
the tree, i.e., changes the future schema execution possibilities, then a
harvesting process is initiated which creates a new schema (the term
‘harvesting’ is borrowed from Chaput [15]). This can be illustrated with
the example of the support: before the system knows about themeans-
end behaviour of the support it may accidentally pull a supporting object
and thereby cause a formerly unreachable object to come into reach.
This will cause an unexpected change in the tree, because there is

now a new object in reach on which various actions (such as grasping)
could be performed. hence, the criterion for harvesting has been met.
A preliminary version of this model has been made in a masters thesis
[16].
Harvesting is the first step in diɼerentiation: it creates a copy of the
schema which had just been executed, but gives it a diɼerent goal (to
achieve the unexpected result). A goal can be to bring about a certain
(set of) feature(s) in the state space, e.g. to touch or grasp an object.
A more diɺcult goal would be to enable another schema, e.g. a goal
could be to make an object reachable (which is the case in the har-
vesting of a schema for the support means-end behaviour). The old
schema gets assigned the goal to achieve the previous standard out-
come. Based on the new goal, the new schema then tries to modify its
precondition so as to capture the situations in which the new goals can
be reliably achieved; this is the diɼerentiation of the precondition which
is the focus of this paper. The motor program and prediction also need
to be diɼerentiated (but this is not tackled in this paper). For learning
the motor program, the concept of Goal Babbling [17] may be useful
as it allows for a limited type of exploration of motor programs, which
is directed towards goals.

Figure 3. Illustration of the routine the agent continuously loops through: I)
Based on the current state of the environment, the agent constructs
a tree of possible actions II) The agent selects a schema for execu-
tion III) The agent executes the selected schema IV) The harvester
module decides whether or not to create a new schema, based on
the result of the last execution V) If a new schema was created it is
added to the agent’s schema library

In the current work, we focus on improving and evaluating this process
of adjusting the precondition of the new schema based on ongoing
experiences generated from its execution. The problem of deciding
when to create the new schema was found to be the easier part in our
previous work, and is not addressed here.

3.2. The Simulated Environment

As our robot we use a simulated 6 degrees of freedom armmounted on
a table with a two finger gripper as its hand in the simulator RobWork-
Sim [18, 19]. In our experiment, we use 3 diɼerent household objects
(see Fig. 4):

1. A simple coɼee cup

2. A cereal Box

3. A tray (with a protrusion to facilitate pulling)
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Figure 4. Illustration of the simulated world (screenshot on the left) containing the robot arm and the 3 household items used in experiments (Cup, Cereal Box and
Tray); the camera is positioned to the left of this image, producing the texlets which can be seen in the rightmost screenshot above. The adjoined text
shows the complete state space of the robotic system. Values prefixed with “Rw”, such as “RwX” come direct from RobWorkSim, whereas values such
as “X” are the result of the vision system operating on the texlets.

Our agent senses its internal state such as robot arm joint angles and
calculates the position and orientation of its hand based on the joint
angles. The full state space consists of this internal state space and
the external statespace describing the world the robot is situated in.
The internal state space has 13 Dimensions. The first 6 variables de-
scribe the joint angles of the robot arm. The second 6 variables de-
scribe the position and orientation of the hand of the robot arm. These
6 variables consist of 3 variables for the Cartesian position and 3 vari-
ables for the orientation of the hand in Roll, Pitch and Yaw values. The
second 6 variables are calculated from the first 6 values. The last vari-
able in the internal state space equates to the openness of the hand’s
fingers. Figure 4 shows this state space.
In our experiments, we first learnt preconditions using object position
data directly from the RobWork simulator (i.e. perfectly accurate data),
then we later used the less perfect data coming from our vision system,
to see how well the learning system would cope with a more realistic
noisy input.

3.3. The (Simulated) Vision System

Our robotic system uses a Kinect-based vision system [20] developed
at SDU, to extract information about objects in the scene.
A Kinect is a 3D scanner camera system developed byMicrosoft asmo-
tion sensing input device for the Microsoft game console Xbox 360. It is
a popular alternative to expensive stereo camera systems and provides
good results in close range applications with up to 3 meters distance
from the Kinect device [21].
The Kinect system projects an infrared image (invisible for human eyes)
over the scene and then takes a picture of the scene. Using its knowl-
edge of the projected infrared image it is able to calculate an accurate
depth map based on the distortion of the infrared image. This depth
map describes the distance from the camera of each point of the sur-
faces visible to the camera system. Using the picture of the scene and
the depth map, our vision system calculates a 3D point cloud as it is
common amongst state of the art vision systems[22].
Based on this 3D point cloud and the colour information of the scene,
our vision system creates surface patches as shown in Figure 4 on
the right hand side. There are diɼerent layers of surface patches. We
only use basic layer with surface patches which we call texlets. These
texlets describe the surface of the scene with additional information,
e.g. not only position in the space, but also the orientation and colour
of the surface [23].
Because we worked with a simulator, we also simulate the Kinect sys-

tem, and included the noise of real Kinect devices. This gives us data
about the depth to the objects in our 3D scene just as we would have
obtained from a real Kinect looking at a real scene with 3D objects. The
data from the simulated vision system is hence more noisy and less ac-
curate than the perfectly accurate data provided by taking the locations
of objects directly from the simulator.
Using diɼerent coloured objects for segmentation purposes, the vision
system is able to recognise up to five objects and extract their centre
of gravity positions in relation to the robot arm, and their orientation.
This is achieved by running PCA over each object’s texlet-based repre-
sentation. Both, position and orientation of an object are described by
3 variables each. These variables are X, Y and Z for the position and
Roll, Pitch and Yaw for the orientation in space. Together with the 13
internal state variables described above in Section 3.2, this gives a 43
Dimensional state space, where the 13 internal state variables describe
the robot itself and the 5 * 6 = 30 external state variables describe the
configuration of the objects in the robots view.
Note that none of the values returned by the vision system is perfectly
accurate. Centre of gravity is approximate, and orientation works best
for a long object, but does not give much useful information for a small
roundish object like a cup. The diɼerence between the state space
based on perfect RobWork data and the imperfect Vision System data
can be clearly seen in Fig. 4 (by comparing a value with its corre-
sponding “Rw” value written directly below it). In the remainder of this
paper, when talking about “RobWork data”, we mean the state space
based on the perfect information provided by the simulator and simi-
larly, with “vision based data” we mean the state space which is based
on the data provided by the noisy Vision system. Part of the challenge
of learning preconditions is to work with this imperfect data.

3.4. Experiments

3.4.1. Example 1: The Support

Our first example is where the robot pulls the tray (means action) in or-
der to bring an object supported by it (in this case the cup) into reach
(goal). In some cases this will not work, because the cup (or what-
ever supported object is desired) might not be fully on the tray. The
learner’s task is to recognise the situations where the means action is
eɼective. Figure 5 illustrates a scene where the desired cup is initially
out of reach, but the robot successfully brings it into reach by pulling
closer the support on wich the cup is standing. The robot then can
successfully grasp the cup.
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Figure 5. This figure illustrates how the robot brings into reach the initially out
of reach cup by pulling closer the tray on which the cup is standing.

3.4.2. Example 2: The Obstruction
In “the obstruction” scenario there are two objects in the scene; the
cereal box and the cup. The cup is the object that the agent wants
to grasp, but the cereal box is obstructing the reach (but not the view).
The desired object is therefore not reachable. In specific situations, e.g.
as illustrated in Figure 6, pushing one object sideways (the box) may
render the other object (the cup) graspable. The learner’s task here
is to recognise situations where pushing the obstruction sideways will
allow the desired object to be grasped.

Figure 6. Illustration of one object (box) obstructing another (cup)

3.4.3. Pretraining the preconditions of schemas
Before learning the above preconditions, we need to endow the system
with some initial schemas. These preliminary schemas are essential

because, for example, if one considers the task of gathering training
data for recognising the support situation, the system needs to pull the
support, and the resulting situation needs to be labelled; i.e. we need
to know if the desired object was reachable after pulling the support;
hence the reachable precondition needs to be learnt first. The motor
programs of these initial schemas were handcoded, while the pre- and
postcondition were trained. These initial schemas are purely for single
actions and are not trained with any knowledge of their applicability in
means-end combinations.
We did this for three schemas:

(1) Grasp(o): reaching and grasping an object o when unob-
structed (e.g. the cup),

(2) Push(o): reaching and pushing an object o (e.g. the box),

(3) Pull(o): reaching and pulling an object o (e.g. the tray),

where o is a parameter for the object.
We also trained one handmade abstraction to recognise “the obstruc-
tion”; this recognises if one object is obstructed by another (e.g. the
cup obstructed by the cereal box). The three schemas were trained by
trying out each schema on a set of randomised environments.
The Grasp(Cup) schema precondition was trained on 3000 training ex-
amples out of which 1500 were successful reaches for the cup and
1500 were unsuccessful reaches. The trained schema precondition
was tested on a validation set with 7862 examples (3931 success-
ful/3931 unsuccessful). On this validation set the schema precondition
achieved a classification success of 99.16% correct classifications us-
ing the RobWork data for training. Using Vision based data for learning
the classification success was 99.13% correct classifications.
The Push(Box) schema precondition was trained on 2200 training ex-
amples (1642 successful/558 unsuccessful). The validation set con-
tained 376 examples (284/92). On this validation set the schema pre-
condition achieved a classification success of 89.63%. Push(Box) was
only trained with RobWork data. The relatively low performance is due
to fewer training examples.
The Pull(Tray) schema precondition was trained on 3000 training ex-
amples (1500/1500). The validation set contained 4380 examples
(2190/2190). On this validation set the schema precondition achieved
a classification success of 92.51% correct classifications using the
RobWork data for training. Using Vision based data for learning the
classification success was 91.69% correct classifications. Note that
this is merely recognising situations where the tray can be pulled, and
says nothing about the means-end behaviour of “the support”.
The obstruction recognising abstraction succeeded in about 93% of its
classification trials. It was trained on 5879 examples (3329/2550) and
tested against 997 examples (898/99). Again, this was only done with
RobWork data, not Vision based data.
All Precondition classifiers and abstraction recognisers were trained us-
ing simple feed forward Neural Networks. They all had 6 input neu-
rons and one hidden layer with 10 Neurons. The output layer was a
single Neuron which was trained to output either 0 or 1 for predicted
fail/success accordingly. The neurons used Sigmoidal activation func-
tions and the training algorithm used was RPROP using cross entropy
error instead of the usual root mean squared error.

3.4.4. Generating Data and Training
Experiment 1 is with the support: We generated 6,453 positions for
support and cup, and then pulled the support to see if the cup would
come into reach. The outcome was that 83% of examples were nega-
tive (the cup did not come into reach), and 17% positive.
Experiment 2 is with obstructed scenarios: We generated 16,361 sce-
narios with random positions for the cup and box, and then pushed the
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box (obstacle) to see if it would convert an obstructed scenario to and
unobstructed one. The outcome was that 94% of examples were neg-
ative (the cup was still unattainable after executing the push action),
and 6% positive. This is probably qualitatively in line with typical real-
world experiences, in that positive examples of configurations where
the pushing of one object makes another accessible are relatively rare,
for everyday toys and household objects in everyday spatial relation-
ships.
Using this labelled data, we trained classifiers to predict situations
where a “remove obstruction” or “pull support” means-end behaviour
would work. The support classifier was separately trained twice (to
compare results): once with the direct RobWork data for object posi-
tion and orientation, and once using the Vision System’s data. In the
experiments with RobWork data, the preconditions (for such things as
“reachable”, see Sec. 3.4.3) learnt from RobWork data were used. For
the experiments with vision data, the preconditions learnt from vision
data were used. The obstruction classifier was only trained on direct
RobWork data. We initially experimented with both logistic regression
and neural networks for classification. The neural networks proved to
be vastly superior and so we did not produce graphs for the logistic re-
gression with all diɼerent training schedules. (The advantage of logistic
regression is speed of training.)
We experimented with a range of networks and determined that a sin-
gle hidden layer of 9 nodes was optimal. The training algorithm was
RPROP [24, 25]. A validation set of 4380 examples (50% positive,
50% negative) was randomly selected. Existing work [26] shows that
learning can be problematic when negative examples greatly outnum-
ber positives; for this reason we also randomly selected a balanced set
(50% positive, 50% negative) of training examples from the entire data.

3.5. Certainty Based Curiosity

The problem of learning of preconditions grows in diɺculty with the size
of the state space; hence it is of considerable diɺculty in our 3D world
with a 6 DOF arm. Given a very large set of training data, the deter-
mination of the precondition might be facilitated, but infants seem to
learn from relatively few examples. For this reason we have looked at
techniques which the program can use to select the training data which
might be most useful. It does seem likely that infants use a similar tech-
nique because they do not select actions at random, but rather have
some intrinsic motivations to prefer certain actions in certain situations.
Certainty Based Curiosity [27] is a strategy to bootstrap the learn-
ing process so that schema precondition and prediction performances
converge faster to their maxima. This bootstrapping is achieved by
trying to perform the schema which is most likely to benefit from the
experience. In every state each schema’s precondition returns a value
between 0 and 1. A 0 corresponds to the class “failure” where the
schema is expected to be unable to achieve its goal when executed in
the current state. A 1 corresponds to the class “success” where the
schema is expected to achieve its goal when executed in the current
state. Thus, the precondition implements a standard classifier, in this
case with Sigmoidal output between 0 and 1. If the output of the pre-
condition classifier lies close to 0 or 1, then the classifier seems to be
certain about the outcome. E.g. 0.01 means there is no point in even
trying and 0.99 means it will almost certainly work. If, however, the clas-
sifier output lies close to 0.5, then the classifier is not sure about the
outcome. In fact, a output of exactly 0.5 means there is a 50% chance
for either outcome, failure or success. This means the classifier is un-
able to predict the schema’s failure or success with any confidence in
the current state. In this case executing the schema is likely to generate
experience which the classifier will benefit from.
Training examples were processed in batches of ten; i.e. each sched-
ule trained with ten random examples initially, and thereafter made its

selection for the next ten based on its current classifier filtering the re-
maining examples. The network was trained on the examples accord-
ing to the following schedules:

· Random: random selection of next samples.

· CBC (Certainty Based Curiosity): select the training examples
whose current predicted classification lies in the range 0.3 to
0.7 (i.e. uncertain classification). If no training examples remain
in this range a random selection is made.

· Ranked CBC: Sort all remaining samples according to how
close their classification is to 0.5, and pick the next samples
from the top (closest to 0.5) of the list.

· 0.2 epsilon greedy CBC: similar to ranked, but with 0.2 percent
chance to pick a random sample. (0.2 was picked because in
previous tests [27] this had given the best results.)

In each case an average was run over 50 complete trials (with diɼerent
randomly initialised neural networks) to smooth results.
The idea behind the Certainty Based Curiosity approach to action
selection would mean that we should place the agent in random situa-
tions and let it choose its actions guided by Certainty Based Curios-
ity (CBC). However in our work we have simply gathered all the training
in advance from a random distribution of positions, and the CBC’s role
is to select the most “interesting” examples at each iteration of training.
We expect to see that in the CBC guided runs the schemas converge to
their best performance faster than in random walk runs. This was our
hypothesis in advance of running the experiments; the actual results
are described in the next subsection.

4. Results

Firstly we were able to learn the precondition of schemas (see Fig. 8).
For the simpler schemas the precondition’s accuracy approached 99%.
For the more complex newly acquired means-end schema of bringing
the cup into reach, the precondition’s accuracy approached 81%. The
support is a very diɺcult spatial relationship to learn (which is also true
for infants [7]). The left image in Figure 7 shows an example of a scene
which the precondition successfully learned to classify as a state in
which pulling the support will bring the cup into reach. The right im-
age in Figure 7 shows an example of a scene which the precondition
successfully classified as a state in which this will not work.

Figure 7. This figure illustrates two diɼerent cases where the precondition was
successfully trained to predict whether pulling the support will bring
the cup into reach. For the scene in the left image it learned that it
is possible, for the scene in the right image it learned that it is not
possible.

Using the realistic Vision based data to learn the precondition we were
able to achieve similar accuracy as with the perfect noise-free Rob-
Work Simulator data. Fig. 8 compares the performance of RobWork
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based learning with Vision based learning for three schemas: Grasp
Cup, Pull Support and Pull Support to bring the cup into reach. How-
ever it is worth noting that the direct RobWork based learning achieved
high accuracy much faster than the Vision based learning, as can be
seen by comparing Fig. 10 and Fig. 12, which are showing the same
learning problem with the only diɼerence being that Fig. 10 uses the
vision system.

Figure 8. The Graph shows the accuracies of the preconditions for the three
schemas Grasp Cup, Pull Support and bringing the cup into reach.
It can be seen that Vision based learning performs almost as well as
the RobWork based learning. 3000 training samples were used.

Secondly we looked at the influence of the diɼerent schedules by which
training examples are selected on the learning rates of learning the pre-
conditions. Figure 9 shows pulling the support and Figure 10 shows
pulling the support to bring the cup into reach. The preconditions are
first learnt with 10 random samples (which gives a performance little
better than chance (50%)). The set of training samples is then step
by step increased by 10 samples, using one of the diɼerent selection
schedules described in Sec. 3.5, and used for relearning the precondi-
tion.

Figure 9. Learning Rates of diɼerent sample picking schedules for pulling the
tray, using input data from the computer vision system. The diɼerent
schedules for the four graphs are described in Section 3.5. Precon-
dition accuracy is on the y-axis and number of samples on the x-axis.

Figure 10. Learning Rates of diɼerent sample picking schedules for pulling the
tray with a cup on top, in order to bring the cup into reach, using input
data from the computer vision system. The diɼerent schedules for
the four graphs are described in Section 3.5. Precondition accuracy
is on the y-axis and number of samples on the x-axis.

The graphs show that learning preconditions with reasonable accuracy
is possible from amoderate amount of training data (e.g. 500 samples).
The graphs also show that learning from random samples performs bet-
ter than using more directed schedules. These results are unexpected
as we showed that directed schedules can perform better than random
in a previous publication [27]. Figures 11 and 12 show how a directed
schedule outperformed “random” in our previous experiments for two
means-end schemas: Pull support to bring cup into reach and push a
cereal box away to unobstruct the cup. The discrepancy is probably
due to the higher noise in the data of the experiments using the vision
system. Kääriäinen [28] showed that any active learner has a lower

bound of Ω〈 η2

ε2 〉 on the sample complexity. The Ω-notation [29] is re-
lated to the more commonly used O-notation, but where the O-notation
describes an upper bound, the Ω-notation describes an lower bound
(i.e. the best case when it comes to the sample complexity in active
learning). The noise in the data is represented by η and ε describes the
classification error. This means when η is large active learning can not
outperform random sampling. In fact, the opposite can be the case.
This is, because the most informative samples active learning is trying
to find, also tend to be the most noise-prone [30]. That means that
the learning algorithm has to use very noisy samples for learning and
cannot even rely on the less informative but also less noisy samples
from further away from the decision boundary which a random sam-
pling would provide. This explains why the random sampling outper-
forms the directed sampling when using the noisy vision based data.
Selecting more noisy samples would lead to worsening performance
for the classifier.

5. Discussion

We have shown that learning preconditions for schemas is possible
with reasonable accuracy using a few hundred training examples. We
also show that with many thousands of experiences, it is possible to
learn preconditions with very high accuracy. In order to try to reduce
the number of training samples required we experimented with diɼer-
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Figure 11. Learning Rates of E-Greedy and Random sample picking in the Un-
obstruct Cup Case using perfect input data direct from the simulator
(i.e. no computer vision system).

Figure 12. Learning Rates of E-Greedy and Random sample picking in the Pull
Support Case using perfect input data direct from the simulator (i.e.
not using computer vision system); note that this is the same graph
as Fig. 10 except this one does not use the vision system.

ent active learning strategies for choosing the next training samples.
Previous results using data directly from the simulator suggested that
using a directed schedule produced faster learning. However, our re-
sults here using the vision system within the simulator suggest that
schedule where the learner chooses randomly from the set of available
experiences produces marginally better results than a directed sched-
ule. This disparity in results is probably due to the high degree of noise
within the vision data.
We are interested to discuss here the similarities and diɼerences be-
tween what our system learns and what infants learn in the 6 to 11
months period. However, we first must point out that we are not at-
tempting to create a model of an infant with our work. Our computa-
tional system is significantly simpler than an infant, and even if some
correspondence might be achieved in what they learn, this would in no
way imply that there was a correspondence in the implementation. We
do not believe it would be fruitful to “replicate” the detail of the results
of an infant study by building a computational system which could pro-

duce similar data points to that produced by the infants, because the
implementations would be so diɼerent that the computational model
would shed no light on how infants operate. However we are interested
in copying the developmental trajectory of infants, and tackling similar
problems in a similar ordering to infants, because we believe that infant
developmental trajectories can give a useful ordering of tasks and com-
petences from easy to hard, where subsequent ones build on previous
acquisitions.
Now we compare what our system learns and what infants learn in the
6 to 11 months period. One point worth noting is that there have been
only a handful of systematic studies analysing how infants acquire the
means-end behaviours for the support or obstruction scenarios. While
we have some studies which probe the competence at a particular age
[31–33], Willatts’s [6] goes further and tracks the change during the
period of transition; he studied the acquisition of the support over the
6 to 8 months period, and analysed eye-gaze (to determine if the in-
fant intentionally pulled the support in order to retrieve the supported
object, or just to play with the support). This showed that accidental
retrieval gradually becomes intentional. However, there are still a lot of
unknowns about the infant’s progression; e.g. it would be beneficial for
a roboticist to see a systematic study of the situations where the infant
classifies correctly or incorrectly, right up to 11 months. Such studies
are not easy to carry out as one needs a lot of access to the infants to
test them very frequently. We are left then with studies which are more
anecdotal than systematic, such as Piaget’s [2, 7]. In general these
show that infants learn fairly rapidly from a few examples, although
the studies have not monitored every waking hour of the infants, so
we do not know how many examples they try while nobody is looking.
Notwithstanding this we can point out some definite major diɼerences
between our learning and infants: infants have some complex back-
ground knowledge which they apply to this problem, largely present as
early perceptual competences [34]. There are many potentially useful
abstractions in perception which the infant may be using, such as pay-
ing particular attention to edges of objects, or the area between two
objects. Infants may also have biases to give priority to certain infor-
mation when learning about causality for example. In addition there
are numerous potential sources of knowledge which the infant could
be bringing to bear on the problem of understanding when the support
works or not; e.g. the infant has prior experience of pushing objects on
surfaces and feeling the frictional resistance [13], the infant has prior
knowledge of how inanimate objects are not supposed to move unless
caused to move by some contact [35], the infant has experinece of
gravity and how one object presses on the object underneath. We are
not sure if any of these sources are in fact used by the infant learning
the support, but they are available. Our artificial system by compar-
ison is very ignorant about the world, and is learning with very little
background knowledge, apart from its ability to segment objects and
analyse relationships between the information extracted about distinct
objects. Our system is learning purely from this fairly low level percep-
tual data; this perceptual data is more limited than what the infant has,
and the infant additionally has more sources of other information tht it
might potentially use. This would explain why infants could learn with
fewer examples.
Theoretically we can also discuss the relationship between our “diɼer-
entiation” and Piagetian assimilation and accommodation. In Piaget’s
accounts [2, 7] most phenomena in infancy involve elements of assim-
ilation and elements of accommodation (rarely is something pure as-
similation or pure accommodation), and diɼerentiation is no diɼerent.
These two processes will apply to the motor part as well as the sen-
sory part (precondition) of the schema, although the present paper has
only focussed on the sensory part. When a schema is about to be dif-
ferentiated, such as the schema for pulling being diɼerentiated to “pull
support”, there is initially assimilation because the new phenomenon is
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seen as similar to the behaviour of pulling, and so the pulling schema
is used as a basis for the new schema. There is also an element of
accommodation because it is recognised that the schema needs to
be adjusted (accommodation); this adjustment (accommodation) hap-
pens over a longer timescale than the original assimilation, because ex-
tensive training data needs to be gathered about support relationships
before an accurate classifier can be trained. Overall accommodation
is the dominant process in diɼerentiation, because it is essentially a
change to a cognitive structure, however the initial assimilation to some
schema which will act as a basis is also crucial. This is a little diɼerent
to some other descriptions of assimilation and accommodation in com-
putational works. Some neural network models interpret assimilation
as the changing of weights in the network whereas accommodation is
used for changes to the architecture (e.g. new connections) [36]. We
find this interpretation a little too narrow, as Piaget’s notion assimilation
would seem to apply even if weights are not changed and a network
can be used “as is” to classify; also Piaget’s notion of accommodation
would seem to apply where any change is made, and changing the
weights in a network can lead to radical changes in what it would recog-
nise. An example closer to ours is the reinforcement learning system of
Tommasino, et al. [37]. They also clearly separate the two processes
and use assimilation to apply to the case where an existing expert can
be used “as is”, whereas they use the term accommodation where an
expert with similar sensorimotor mappings is used as a basis and then
modified. Under our interpretation we would say that the latter case has
an element of assimilation because of the choice of an expert with sim-
ilar sensorimotor mappings; ultimately this comes down to how people
interpret Piaget’s writings and what he meant with these two terms; this
issue of varying interpretations is also mentioned in the same paper by
Tommasino, et al. [37]. The idea of building a library of schemas (or
re-using existing “experts”) also entails a number of interesting prob-
lems related to assimilation and accommodation which we have not
addressed here, for example how should the choice be made between
adjusting an existing skill or creating a new one? How can the con-
text be used to decide which new situations can be tackled by existing
skills? (See also [38]).

5.1. Comparison with related work

Apart from the work of Rosman and Ramamoorthy [8] which we dis-
cussed in the introduction, we have not found a related work with which
we can make a direct comparison, however several works are less di-
rectly related. Our work could be described as autonomously learning
planning operators, for which there is some related work in AI [15, 39–
41]; Chaput [15] learns new operators via a self-organising map which
looks at vectors of all sensor values before and after an action; this was
eɼective in the scenario they used with a small number of binary sen-
sors, but it would not easily scale to larger state spaces. The work of
Mourao et al. [41] learns action eɼects for a robot manipulation sce-
nario. The sensor abstractions are provided (e.g. predicates such as
“object x is in object y”) and the system learns which predicates be-
come true after the action is performed. Their predicates are predefined
whereas in our work we want the state space to develop over time, so
that the agent eɼectively invents new predicates (such as the spatial re-
lationship defining the support relation). Mugan and Kuipers’ work [40]
is somewhat close in that they do not need to predefine predicates and
can autonomously find regions within variables; however compared to
this we need the ability to learn a wider class of possible preconditions,
for example those that involve relationships among variables.
Work on learning “aɼordances” is quite close to ours; Ugur et al. [42]
learns aɼordance predictors for behaviours by learning the mapping
from the object features to discovered object eɼect categories. These
predictors can then be used by an agent to make plans to achieve de-

sired goals. This work is quite similar to ours in that essentially it boils
down to classification; i.e. once eɼect categories have been clustered
Ugur et al. use a classifier to learn the mapping from the initial object
features to these eɼects. They use SVMs where we use neural net-
works. At a conceptual level a diɼerence in the approaches concerns
what drives the learning of a classifier. In Ugur et al.’s work the deci-
sion about what eɼects a classifier should be learned for is dictated by
the choice of features which the agent has been given as its percep-
tual world. In our work the decision about which action eɼects to learn
a precondition for is dictated by whether those action eɼects facilitate
other subsequent actions which were previously impossible. We would
speculate that it is likely that infants combine both approaches.
One major claim we can make for our work relative to others reviewed
is that it seems to be one of the few works which tackles these specific
actual early infant means-end behaviours; i.e. the first means-end be-
haviours that infants acquire in the second half of the first year. We are
not aware of any other developmental robotics work which tackles the
acquisition of the support for example. Some of the works reviewed
above tackle domains far removed from infancy (e.g. Chaput’s forager
[15]) or tasks more advanced than what infants engage in the first year
[41]. As stated in the introduction, we believe that the acquisition of
early means-end behaviours is of major importance to cognitive devel-
opment because it is through these that infants begin to gain a higher
level understanding of the world, in this case by beginning to take no-
tice of important spatial relationships between objects, which determine
how they might behave under manipulation. More generally we believe
that the tasks, and ordering, present in early infancy could be quite
advantageous to follow because it leads through a developmental tra-
jectory from easy to diɺcult, with later acquisitions building on earlier
ones.

6. Conclusion and Future Work

In this work we have looked at the problem of learning the precondi-
tion (and making it more accurate) for a newly discovered means-end
behaviour. We have shown that learning these preconditions accu-
rately takes rather a lot of training data, especially when realistic visual
input is used. When using the data form our (noisy) vision system we
have shown a slight advantage to selecting training examples randomly
rather than by an active learning strategy (which contradicted our pre-
vious results using noiseless data direct from the simulator). It could be
expected that using more detailed and accurate vision information (not
just the position and orientation) may well reduce the noise and make
an active strategy more appropriate.
Our approach is quite naive in that it looks at rather crude parameters
extracted from the visual data, such as position and orientation, which
lose most of the detail of the surfaces of the objects involved and their
spatial relationships. In future work we intend to make use of more
detailed visual data so as to enable the system to more accurately learn
the precise spatial relationships between objects which determine the
success of various means-end actions which require objects to be in
special relationships (which is very relevant to tool use for example).
In future work we would also like to collaborate with psychologists
studying infants to learn more about the order in which infants acquire
various stages of competence in their learning of the support and other
means-end behaviours. For example, we know from Uzgiris and Hunt’s
studies that although an 8 month-old can successfully pull a support
(as a means to retrieve an object), the necessary spatial relationship
(on top of) is not understood, and up until 10 months or later the infant
will still pull a support even if the desired object is held above it and
not touching it [31, p.111], or resting on an object close to the support.
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We would like to see a rigorous testing of a wide variety of borderline
support cases to determine where infants misclassify the support rela-
tionship, and how this changes from 8 to 11 months.

Another aspect to consider is the diɼerent sources of knowledge and
the order in which infants develop skills for successfully using a tool
such as the support, and develop their perceptual skills for recognis-
ing the causal relationship when they see it used by someone else.
Schlesinger and Langer’s results show that causal perception devel-
ops later than the (action) skill for using the support [33]. If developing
robots are to follow the trajectory of infant development this suggests
that the emphasis should be firstly on their own exploratory actions
with the tool, rather than learning purely from observation. However
Schlesinger and Langer think it unlikely that causal activity is the only
determinant in the development of infants causal perception, and fur-
ther research could help to elucidate the potential contributions of other
sources of knowledge. For example linguistic sources of knowledge
may also be important. It is claimed that language input may influence
category formation as early as 3 months [43], however it is not clear at
what age language influences the formation of concepts of spatial rela-
tionships such as those dealt with in this paper. Research has shown
that 5-month-old infants’ categorisation of spatial relationships was not
influenced by the language they were exposed to, but by adulthood
the extent to which their native language marked these spatial relation-
ships altered their sensitivity to these concepts [44]. It remains unclear
at what age the language began to influence the developing spatial re-
lationship concepts. Casasola showed the influence of language on
18-month-olds learning to categorise the support relationship [45]; in-
terestingly her study showed that 18-month-olds failed to categorise
support situations, which is surprising given that they would by this time
have spent more than half their lives knowing how to use a support in
a means-end activity; it suggests that when the context of the task is
diɼerent infants do not necessarily draw on the knowledge they might
have available in another context (i.e. the context of acting to achieve
a goal). Other studies examining how linguistic terms for spatial rela-
tionships are learned have also shown the diɺculty of transferring what
is learned in one context to another; they have shown that experience
of concrete interactions with the objects facilitate the learning, and also
that abstract artificial objects provide situations in infants learn poorly,
instead infants require objects with functionally relevant properties [46].
In summary significant further research would be required to elucidate
the contributions of all the potential sources of information that an infant
might use to learn a spatial relationship, and the additional diɺculties
provided by varying contextual aspects.

If we step back from the details and look at how the problem tackled
here fits into the big picture of the mechanisms of development, we
see that finding preconditions is one way to find new abstractions over
states. The preconditions of means-end behaviours are particularly in-
teresting because they tend to capture spatial relationships among ob-
jects (e.g. the means object and the goal object). It is conceivable
that sensory abstractions discovered in this way could subsequently
be used to dynamically extend the state space of a cognitive system,
so that it adds new higher level state variables. Each time the state
space is looked at, the cognitive system can take the base variables
from the simulator and extend them step by step with all abstractions
found so far. This mechanism may lay a foundation for future work on
ongoing emergence by emulating Mandler’s mechanism of Percep-
tual Analysis [47]. Newly discovered abstractions could be thought
of as emergent symbolic elements in the system. Our long term goal
is to create a developmental AI system that evolves from subsymbolic
space to symbolic reasoning by finding/creating symbols on its own.
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