25 research outputs found

    Biomass burning related ozone damage on vegetation over the Amazon forest: A model sensitivity study

    Get PDF
    The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5-15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr-1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.This work was funded by the Natural Environment Research Council (NERC) South AMerican Biomass Burning Analysis (SAMBBA) project grant code NE/J010057/1. The UK Met Office contribution to this project was funded by the DECC under the Hadley Centre Climate Programme contract (GA01101). The Brazilian contribution was funded by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, projects 08/58100-2 and 12/14437-9). We thank INPA (Instituto Nacional de Pesquisas da Amazonia) for the coordination work of the LBA Experiment. We thank USP technicians for the support on data sampling: Alcides Ribeiro, Ana Lucia Loureiro, Fernando Morais and Fabio Jorge

    Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: Observations from the new UK lidar and sun-photometer network

    Get PDF
    This is the final version. Available from European Geosciences Union (EGU) / Copernicus Publications via the DOI in this record. On 15-16 October 2017, ex-hurricane Ophelia passed to the west of the British Isles, bringing dust from the Sahara and smoke from Portuguese forest fires that was observable to the naked eye and reported in the UK's national press. We report here detailed observations of this event using the UK operational lidar and sun-photometer network, established for the early detection of aviation hazards, including volcanic ash. We also use ECMWF ERA5 wind field data and MODIS imagery to examine the aerosol transport. The observations, taken continuously over a period of 30 h, show a complex picture, dominated by several different aerosol layers at different times and clearly correlated with the passage of different air masses associated with the intense cyclonic system. A similar evolution was observed at several sites, with a time delay between them explained by their different location with respect to the storm and associated meteorological features. The event commenced with a shallow dust layer at 1-2 km in altitude and culminated in a deep and complex structure that lasted ∌12 h at each site over the UK, correlated with the storm's warm sector. For most of the time, the aerosol detected was dominated by mineral dust mixtures, as highlighted by depolarisation measurements, but an intense biomass burning aerosol (BBA) layer was observed towards the end of the event, lasting around 3 h at each site. The aerosol optical depth at 355 nm (AOD355) during the whole event ranged from 0.2 to 2.9, with the larger AOD correlated to the intense BBA layer. Such a large AOD is unprecedented in the UK according to AERONET records for the last 20 years. The Raman lidars permitted the measurement of the aerosol extinction coefficient at 355 nm, the particle linear depolarisation ratio (PLDR), and the lidar ratio (LR) and made the separation of the dust (depolarising) aerosol from other aerosol types possible. A specific extinction has also been computed to provide an estimate of the atmospheric concentration of both aerosol types separately, which peaked at 420±200 ÎŒgm-3 for the dust and 558±232 ÎŒgm-3 for the biomass burning aerosols. Back trajectories computed using the Numerical Atmospheric-dispersion Modelling Environment (NAME) were used to identify the sources and strengthen the conclusions drawn from the observations. The UK network represents a significant expansion of the observing capability in northern Europe, with instruments evenly distributed across Great Britain, from Camborne in Cornwall to Lerwick in the Shetland Islands, and this study represents the first attempt to demonstrate its capability and validate the methods in use. Its ultimate purpose will be the detection and quantification of volcanic plumes, but the present study clearly demonstrates the advanced capabilities of the network.Natural Environment Research CouncilUniversity of Exete

    Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Get PDF
    African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable

    How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption

    Get PDF
    For over 6 months, the 2014–2015 effusive eruption at Holuhraun, Iceland, injected considerable amounts of sulfur dioxide (SO2) into the lower troposphere with a daily rate of up to one-third of the global emission rate, causing extensive air pollution across Europe. The large injection of SO2, which oxidises to form sulfate aerosol (SO42-), provides a natural experiment offering an ideal opportunity to scrutinise state-of-the-art general circulation models' (GCMs) representation of aerosol–cloud interactions (ACIs). Here we present Part 1 of a two-part model inter-comparison using the Holuhraun eruption as a framework to analyse ACIs. We use SO2 retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) instrument and ground-based measurements of SO2 and SO42- mass concentrations across Europe, in conjunction with a trajectory analysis using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, to assess the spatial and chemical evolution of the volcanic plume as simulated by five GCMs and a chemical transport model (CTM). IASI retrievals of plume altitude and SO2 column load reveal that the volcanic perturbation is largely contained within the lower troposphere. Compared to the satellite observations, the models capture the spatial evolution and vertical variability of the plume reasonably well, although the models often overestimate the plume altitude. HYSPLIT trajectories are used to attribute to Holuhraun emissions 111 instances of elevated sulfurous surface mass concentrations recorded at European Monitoring and Evaluation Programme (EMEP) stations during September and October 2014. Comparisons with the simulated concentrations show that the modelled ratio of SO2 to SO42- during these pollution episodes is often underestimated and overestimated for the young and mature plume, respectively. Models with finer vertical resolutions near the surface are found to better capture these elevated sulfurous ground-level concentrations. Using an exponential function to describe the decay of observed surface mass concentration ratios of SO2 to SO42- with plume age, the in-plume oxidation rate constant is estimated as 0.032 ± 0.002 h−1 (1.30 ± 0.08 d e-folding time), with a near-vent ratio of 25 ± 5 (”g m−3 of SO2 / ”g m−3 of SO42-). The majority of the corresponding derived modelled oxidation rate constants are lower than the observed estimate. This suggests that the representation of the oxidation pathway/s in the simulated plumes is too slow. Overall, despite their coarse spatial resolutions, the six models show reasonable skill in capturing the spatial and chemical evolution of the Holuhraun plume. This capable representation of the underlying aerosol perturbation is essential to enable the investigation of the eruption's impact on ACIs in the second part of this study.</p

    Bounding global aerosol radiative forcing of climate change

    Get PDF
    Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds

    Strong constraints on aerosol-cloud interactions from volcanic eruptions.

    Get PDF
    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response

    A parameterisation for the activation of cloud drops including the effects of semi-volatile organics

    No full text
    We present a parameterisation of aerosol activation, including co-condensation of semi-volatile organics, for warm clouds that has applications in large-scale numerical models. The scheme is based on previously developed parameterisations that are in the literature, but has two main modifications. The first is that the total aerosol mass is modified by the condensation of organic vapours entering cloud base, whereas the second is that this addition of mass acts to modify the median diameter and the geometric standard deviation of the aerosol size distribution. It is found that the scheme is consistent with parcel model calculations of co-condensation under different regimes. Such a parameterisation may find use in evaluating important feedbacks in climate models
    corecore