124 research outputs found
The influence of the Chi_b(3P) state on the decay cascade of bottomium in PbPb collisions at LHC energies
We investigate the decay cascade of the Upsilon(nS) meson including the newly
found Chi_b(3P) state in pp and PbPb collisions at LHC energies. The main goal
is to quantitatively determine the additional suppression of the Upsilon(nS)
states in PbPb collisions relative to pp at LHC energies of sqrt(s_NN) = 2.76
TeV when the Chi_b(3P) state is included together with the Upsilon(nS) and
Chi_b(1P,2P) states. It is found that the suppression of Upsilon(1S) in PbPb
collisions relative to pp is increased by at most 7% through the inclusion of
Chi_b(3P), whereas the suppression factors for the Upsilon(2S) and Upsilon(3S)
states do not change significantly.Comment: 4 pages, 2 figure
Elliptical Flow in Relativistic Ion Collisions at s^(1/2)= 200 A GeV
A consistent picture of the Au+Au and D+Au, s^1/2 = 200 A GeV measurements at
RHIC obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors including both
the rapidity and transverse momentum spectra was previously developed with the
simulation LUCIFER. The approach was modeled on the early production of a fluid
of pre-hadrons after the completion of an initial, phase of high energy
interactions. The formation of pre-hadrons is discussed here, in a perturbative
QCD approach as advocated by Kopeliovich, Nemchik and Schmidt. In the second
phase of LUCIFER, a considerably lower energy hadron-like cascade ensues. Since
the dominant collisions occurring in this latter phase are meson-meson in
character while the initial collisions are between baryons, i.e. both involve
hadron sized interaction cross-sections, there is good reason to suspect that
the observed elliptical flow will be produced naturally, and this is indeed
found to be the case.Comment: 7 pages, 6 figure
Contribution of alpha cluster exchange to elastic and inelastic 16O + 20Ne scattering
Angular distributions for elastic and inelastic transitions in 20Ne + 16O scattering have been measured at E(20Ne)=50 MeV. For the 0+, 2+, and 4+ members of the 20Ne ground-state rotational band, the angular distributions exhibit pronounced backward peaking characteristic of an alpha -cluster exchange mechanism. The analysis of the ground-state transition in the first-order elastic transfer model yields no satisfactory fit although microscopic cluster form factors and full recoil corrections are employed. A coupled channels calculation for the 0+, 2+, and 4+ transitions reveals very strong coupling effects, indicating that the coherent superposition of first-order optical model and distorted-wave Born-approximation amplitudes may not be an adequate model for these reactions. NUCLEAR REACTIONS 16O(20Ne, 16O) and 16O(20Ne, 20Ne), elastic and inelastic transfer; E=50MeV; measured sigma (Ef , theta ); optical model + DWBA, and CCBA analyses
The Worker Honeybee Fat Body Proteome Is Extensively Remodeled Preceding a Major Life-History Transition
Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers
Suppression of High Transverse Momentum Spectra in Au+Au Collisions at RHIC
Au+Au, A GeV measurements at RHIC, obtained with the PHENIX,
STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral
pion production, relative to an appropriately normalized NN level. For central
collisions and vanishing pseudo-rapidity these experiments exhibit suppression
in charged meson production, especially at medium to large transverse momenta.
In the PHENIX experiment similar behavior has been reported for
spectra.
In a recent work on the simpler D+Au interaction, to be considered perhaps as
a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which
explains the mixed observation of moderately reduced suppression at
higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here
we present the extension of this work to the more massive ion-ion collisions.
Our major thesis is that much of the suppression is generated in a late stage
cascade of colourless pre-hadrons produced after an initial short-lived
coloured phase. We present a pQCD argument to justify this approach and to
estimate the time duration of this initial phase. Of essential
importance is the brevity in time of the coloured phase existence relative to
that of the strongly interacting pre-hadron phase. The split into two phases is
of course not sharp in time, but adequate for treating the suppression of
moderate and high mesons.Comment: 19 pages, 10 figure
Thermal Dileptons at LHC
We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb
collisions at LHC. Hadronic emission in the low-mass region is calculated using
in-medium spectral functions of light vector mesons within hadronic many-body
theory. In the intermediate-mass region thermal radiation from the Quark-Gluon
Plasma, evaluated perturbatively with hard-thermal loop corrections, takes
over. An important source over the entire mass range are decays of correlated
open-charm hadrons, rendering the nuclear modification of charm and bottom
spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions
at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun
2007 v2: acknowledgment include
Deciphering Proteomic Signatures of Early Diapause in Nasonia
Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Stable reference genes for the measurement of transcript abundance during larval caste development in the honeybee
Many genes are differentially regulated by caste development in the honeybee. Identifying and understanding these differences is key to discovering the mechanisms underlying this process. To identify these gene expression differences requires robust methods to measure transcript abundance. RT-qPCR is currently the gold standard to measure gene expression, but requires stable reference genes to compare gene expression changes. Such reference genes have not been established for honeybee caste development. Here, we identify and test potential reference genes that have stable expression throughout larval development between the two female castes. In this study, 15 candidate reference genes were examined to identify the most stable reference genes. Three algorithms (GeNorm, Bestkeeper and NormFinder) were used to rank the candidate reference genes based on their stability between the castes throughout larval development. Of these genes Ndufa8 (the orthologue of a component of complex one of the mitochondrial electron transport chain) and Pros54 (orthologous to a component of the 26S proteasome) were identified as being the most stable. When these two genes were used to normalise expression of two target genes (previously found to be differentially expressed between queen and worker larvae by microarray analysis) they were able to more accurately detect differential expression than two previously used reference genes (awd and RpL12). The identification of these novel reference genes will be of benefit to future studies of caste development in the honeybee
Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia
<p>Abstract</p> <p>Background</p> <p>Carpenter ants (genus <it>Camponotus</it>) are considered to be omnivores. Nonetheless, the genome sequence of <it>Blochmannia floridanus</it>, the obligate intracellular endosymbiont of <it>Camponotus floridanus</it>, suggests a function in nutritional upgrading of host resources by the bacterium. Thus, the strongly reduced genome of the endosymbiont retains genes for all subunits of a functional urease, as well as those for biosynthetic pathways for all but one (arginine) of the amino acids essential to the host.</p> <p>Results</p> <p>Nutritional upgrading by <it>Blochmannia </it>was tested in 90-day feeding experiments with brood-raising in worker-groups on chemically defined diets with and without essential amino acids and treated or not with antibiotics. Control groups were fed with cockroaches, honey water and Bhatkar agar. Worker-groups were provided with brood collected from the queenright mother-colonies (45 eggs and 45 first instar larvae each). Brood production did not differ significantly between groups of symbiotic workers on diets with and without essential amino acids. However, aposymbiotic worker groups raised significantly less brood on a diet lacking essential amino acids. Reduced brood production by aposymbiotic workers was compensated when those groups were provided with essential amino acids in their diet. Decrease of endosymbionts due to treatment with antibiotic was monitored by qRT-PCR and FISH after the 90-day experimental period. Urease function was confirmed by feeding experiments using <sup>15</sup>N-labelled urea. GC-MS analysis of <sup>15</sup>N-enrichment of free amino acids in workers revealed significant labelling of the non-essential amino acids alanine, glycine, aspartic acid, and glutamic acid, as well as of the essential amino acids methionine and phenylalanine.</p> <p>Conclusion</p> <p>Our results show that endosymbiotic <it>Blochmannia </it>nutritionally upgrade the diet of <it>C. floridanus </it>hosts to provide essential amino acids, and that it may also play a role in nitrogen recycling via its functional urease. <it>Blochmannia </it>may confer a significant fitness advantage via nutritional upgrading by enhancing competitive ability of <it>Camponotus </it>with other ant species lacking such an endosymbiont. Domestication of the endosymbiont may have facilitated the evolutionary success of the genus <it>Camponotus</it>.</p
- …