81 research outputs found

    Anàlisi palinològica

    Get PDF

    Primeros resultados del análisis polínico del depósito lacustre del "Pla de l'Estany (Olot, Girona)

    Get PDF
    Se presenta un avance del análi_sis palino l ógico de una prospecc ión de 17 .5 metros, realizada al Noreste de la Península I bérica, al pie de los Pirineos , y centrado en los nivel es turbases o de tríti cos . La turbera superior pertenece al Subboreal y al Subatl ánt i co . En todo el diagrama dominan los árbol es sucediéndose cronológi camente l os bosques de Ab ies /Fagus, Pinus y finalmente Quercus .In thi s paper we present sorne prel iminary data f r om a pal yno logical analysis of a e ore 17.5 m deep taken in t he Pyrenes N. E. Spain . We ha ve examined the peat (which in is upper level appeared to belong to the Subboreal and Subatlantic period) and the al so detritic l ay e r s .. The dominant taxa encountered , ,ere al ! trees which appeared , in c hronol ogical orde r 1 as, follows : Abies/ Fagus 1 Pinus and Quercus

    Algunas precisiones sobre el muestreo e interpretación de los datos en Arqueopalinología

    Get PDF

    14C dating of the last Croscat volcano eruption (Garrotxa Region, NE Iberian Peninsula)

    Get PDF
    In this shortnote, we present the results of a geochronological study of the last eruption in the volcanic region of the Garrotxa (NE Iberian Peninsula). Four 14C analysis of organic matter contained in palaeosols located under volcanic pyroclastic fall deposits of the Croscat volcano were made. The samples gave ages between 13160 and 15710 years cal BP, and are in accord with our palynological analysis and climate reconstruction at that time. The ages that we report are the youngest obtained for volcanic activity in the Iberian Peninsula

    Prehistoric palaeodemographics and regional land cover change in eastern Iberia

    Get PDF
    Much attention has been placed on the drivers of vegetation change on the Iberian Peninsula. While climate plays a key role in determining the species pools within different regions and exerts a strong influence on broad vegetation patterning, the role of humans, particularly during prehistory, is less clear. The aim of this paper is to assess the influence of prehistoric population change on shaping vegetation patterns in eastern Iberia and the Balearic Islands between the start of the Neolithic and the late Bronze Age. In all, 3385 radiocarbon dates have been compiled across the study area to provide a palaeodemographic proxy (radiocarbon summed probability distributions (SPDs)). Modelled trends in palaeodemographics are compared with regional-scale vegetation patterns deduced from analysis of 30 fossil pollen sequences. The pollen sequences have been standardised with count data aggregated into contiguous 200-year time windows from 11,000 cal. yr BP to the present. Samples have been classified using cluster analysis to determine the predominant regional land cover types through the Holocene. Regional human impact indices and diversity metrics have been derived for north-east and south-east Spain and the Balearic Islands. The SPDs show characteristic boom-and-bust cycles of population growth and collapse, but there is no clear synchronism between north-east and south-east Spain other than the rise of Neolithic farming. In north-east Iberia, patterns of demographic change are strongly linked to changes in vegetation diversity and human impact indicator groups. In the south-east, increases in population throughout the Chalcolithic and early Bronze Age result in more open landscapes and increased vegetation diversity. The demographic maximum occurred early in the 3rd millennium cal. BP on the Balearic Islands and is associated with the highest levels of human impact indicator groups. The results demonstrate the importance of population change in shaping the abundance and diversity of taxa within broad climatically determined biomes

    Late Holocene Aleppo pine (Pinus halepensis Miller) woodlands in Mallorca (Balearic Islands, Western Mediterranean): Investigation of their distribution and the role of human management based on anthracological, dendro-anthracological and archaeopalynological data

    Get PDF
    The pioneering nature of Mediterranean pines and their phytosociological role have been largely discussed in relation to different agents (e.g., edaphic, climatic or anthropogenic). In this context, Aleppo pine is one of the most widespread pine species in the Mediterranean basin, as it is especially adapted to climatic constraints, such as drought and high seasonality, and has a high tolerance for salinity and strong coastal winds. It is also well adapted to regeneration after anthropogenic landscape disturbances, highlighting its important after-fire regeneration rates. In this sense, phytosociological studies conducted in Mediterranean landscapes have found that this species'' wide distribution is mostly due to its rapid regeneration after human landscape transformation, including fire, and the abandonment of agricultural lands. Aleppo pine is considered to broadly develop after human action in sclerophyllous formation, in which it would be scarce or absent without human intervention. Parallel, paleoenvironmental and archaeobotanical studies have attempted to trace these trends back to prehistoric times to investigate this species'' role in Late Pleistocene and Holocene vegetation and evaluate the role of climate and human action in its diachronic dynamics. In this study, we present a compendium of anthracological, dendro-anthracological and archaeopalyonological data with the objective of (i) investigating the nature and distribution of Aleppo pine on the island of Mallorca and (ii) evaluating the possibility that human action could have resulted in the spread of this pine species during the first two millennia of permanent human occupation of the island (c. 2300 cal. BCE–1st-century ACE). Investigating these archaeobotanical datasets, as well as making comparisons with anthracological and paleoenvironmental studies in neighbouring Mediterranean zones (Iberia), allowed us to attest that Aleppo pine is a natural, pre-human component of the Holocene vegetation of the island, and it is especially well-adapted to coastal environments. Moreover, we describe the trends and characteristics of the human management of pine woodlands through anthracology and dendro-anthracology, suggesting that human action did not provoke widespread growth of Aleppo pine in Mallorca at the expense of other vegetation types during prehistory. Such processes, well-documented by current phytosociological studies, probably began at some unknown point after the Romanisation of the island

    White dwarf-main sequence binaries from Gaia EDR3 : the unresolved 100 pc volume-limited sample

    Get PDF
    We use the data provided by the Gaia Early Data Release 3 to search for a highly-complete volume-limited sample of unresolved binaries consisting of a white dwarf and a main sequence companion (i.e. WDMS binaries) within 100 pc. We select 112 objects based on their location within the Hertzsprung-Russell diagram, of which 97 are new identifications. We fit their spectral energy distributions (SED) with a two-body fitting algorithm implemented in VOSA (Virtual Observatory SED Analyser) to derive the effective temperatures, luminosities and radii (hence surface gravities and masses) of both components. The stellar parameters are compared to those from the currently largest catalogue of close WDMS binaries, from the Sloan Digital Sky Survey (SDSS). We find important differences between the properties of the Gaia and SDSS samples. In particular, the Gaia sample contains WDMS binaries with considerably cooler white dwarfs and main sequence companions (some expected to be brown dwarfs). The Gaia sample also shows an important population of systems consisting of cool and extremely low-mass white dwarfs, not present in the SDSS sample. Finally, using a Monte Carlo population synthesis code, we find that the volume-limited sample of systems identified here seems to be highly complete (≃ 80 ± 9 per cent), however it only represents ≃9 per cent of the total underlying population. The missing ≃91 per cent includes systems in which the main sequence companions entirely dominate the SEDs. We also estimate an upper limit to the total space density of close WDMS binaries of ≃ (3.7 ± 1.9) × 10-4 pc-3.Fil: Rebassa Mansergas, A. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; EspañaFil: Solano, E.. CSIC-INTA. Centro de Astrobiologí­a; EspañaFil: Jiménez Esteban, F. M.. CSIC-INTA. Centro de Astrobiologí­a; EspañaFil: Torres, S.. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; EspañaFil: Rodrigo, C.. CSIC-INTA. Centro de Astrobiologí­a; EspañaFil: Ferrer Burjachs, A. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; EspañaFil: Calcaferro, Leila Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Althaus, Leandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Córsico, Francisco Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin

    Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene. First record of Aesculus L.

    Get PDF
    The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower– Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role

    The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867
    corecore