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Abstract 19 

Much attention has been placed on the drivers of vegetation change on the Iberian Peninsula.  20 

Whilst climate plays a key role in determining the species pools within different regions and exerts a 21 

strong influence on broad vegetation patterning, the role of humans, particularly during prehistory, 22 

is less clear.  The aim of this paper is to assess the influence of prehistoric population change on 23 

shaping vegetation patterns in eastern Iberia and the Balearic Islands between the start of the 24 

Neolithic and the late Bronze Age.  3385 radiocarbon dates have been compiled across the study 25 

area to provide a palaeodemographic proxy (radiocarbon summed probability distributions: SPD).  26 

Modelled trends in palaeodemographics are compared with regional-scale vegetation patterns 27 

deduced from analysis of 30 fossil pollen sequences.  The pollen sequences have been standardised 28 

with count data aggregated into contiguous 200-yr time windows from 11000 cal. yr BP to present. 29 

Samples have been classified using cluster analysis to determine the predominant regional land 30 

cover types through the Holocene.  Regional human impact indices and diversity metrics have been 31 

derived for northeast and southeast Spain and the Balearic Islands.  The SPDs show characteristic 32 

boom-and-bust cycles of population growth and collapse, but there is no clear synchronism between 33 

northeast and southeast Spain other than the rise of Neolithic farming.  In northeast Iberia patterns 34 
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of demographic change are strongly linked to changes in vegetation diversity and human impact 35 

indicator groups. In the southeast increases in population throughout the Chalcolithic and early 36 

Bronze Age result in more open landscapes and increased vegetation diversity.  The demographic 37 

maximum occurred early in the 3rd millennium cal. BP on the Balearic Islands and is associated with 38 

highest levels of human impact indicator groups. The results demonstrate the importance of 39 

population change in shaping the abundance and diversity of taxa within broad climatically-40 

determined biomes. 41 

 42 
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INTRODUCTION 48 

 49 

Much attention has been placed on Holocene vegetation change, and on the drivers of that change, 50 

in the Iberian Peninsula.  Much of that focus has been on the role of climate in determining 51 

vegetation trajectories, particularly in regions where moisture availability is a key factor in the 52 

macroecological patterning exhibited by more arid regions (Carrión et al., 2010b).  Climate inevitably 53 

does play an important role in influencing and determining the species present across different 54 

regions (Carrión et al., 2010a), and climatic change can exert a strong influence on broad vegetation 55 

dynamics.  For example, many pollen sequences describe an increase in mesic woodland associated 56 

with a relatively wetter mid-Holocene phase (e.g. Carrión et al., 2001a, 2001b; Carrión et al., 2004; 57 

Carrión et al., 2007; Aranbarri et al., 2014).  Increasing aridity then resulted in expansion of 58 

sclerophyllous and xeric communities (Carrión et al., 2010; Pérez-Obiol et al., 2011).  The role of 59 

humans in influencing vegetation change, particularly in earlier archaeological periods, is by contrast 60 

less straightforward, especially at the regional level.  In more recent periods, since 1500 cal. yr BP, 61 

the influence of anthropogenic forcing on vegetation in eastern Iberia can be clearly demonstrated 62 

and linked to increasing land degradation caused by grazing pressure (Carrión et al., 2001a; Carrión 63 

et al., 2004; Aranbarri et al., 2014).  In addition, research over the last few years has also uncovered 64 

increasing evidence for the impact of earlier societies on land cover in eastern Iberia.  According to 65 

Carrión et al. (2010a) human settlement and land use has played a role in shaping vegetation 66 

patterns since the mid-Holocene through land conversion for agriculture, mining, and grazing.  For 67 

example, Revelles et al. (2015) describe pronounced changes in deciduous woodland cover and 68 

maintenance of cleared landscapes from the early Neolithic in northeast Spain, in close proximity to 69 

known early Neolithic archaeological settlements.  It is likely that whilst climate controlled broad 70 

geographical patterning on vegetation (e.g. by controlling fundamental species distribution and 71 

influencing competition between species), this was overprinted by human disturbances, at least at 72 

the local scale (Castro et al., 1994, 1998).  There is thus a need to further explore the role of past 73 

populations on land cover change. 74 

 75 

Radiocarbon dates from archaeological sites are increasingly used as proxies for past demographic 76 

change, through the use of summed probability distributions (radiocarbon SPD, also known as 77 

summed calibrated date probability distributions: SCDPD, Shennan et al., 2013). The basis of the 78 

approach is summarised in several places (e.g. Shennan and Edinborough, 2007; Shennan et al., 79 

2013; Palmisano et al., 2017) and assumes that change in the number of radiocarbon dates in a 80 

defined region is a useful proxy for demographic trends.  Balsera et al. (2015b) presented the first 81 
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attempt at prehistoric palaeodemographics using radiocarbon dates for the whole of Iberia, drawing 82 

on 4402 dates from 1167 archaeological sites.  They identified the characteristic ‘boom and bust’ 83 

cycle of population growth and subsequent contraction at the start of the Neolithic (c.7250 cal. yr 84 

BP) observed elsewhere in Europe (Shennan et al., 2013).  Subsequent studies have applied the 85 

approach in the Iberian peninsula (e.g. Bernabeu et al., 2014; García Puchol et al., 2015).  Lillios et al. 86 

(2016) explored regional trends in demographic change from three sub-regions of the Iberian 87 

Peninsula (northwest, northeast and southeast) using dates from settlements and burials across the 88 

Chalcolithic and Bronze Age and García Puchol et al. (2017) mapped spatial and temporal patterns in 89 

radiocarbon SPD to show dynamics of the final hunter gatherers and the first farmers.  These studies 90 

noted clear differences in regional demographic trends, but record increases in population as 91 

inferred from the radiocarbon SPD in spite of inferred increases in aridity during the sixth and fifth 92 

millennia cal. BP.  These sub-regional inferences are extended by Blanco-González et al. (2018), who 93 

suggest inter-regional differences in climate as a potential explanatory variable for regional 94 

demographic differences. The characteristically mediterranean southeast and northeast regions are 95 

described as having small demographic responses to known climate events (e.g. the 4.2 ka cal BP 96 

event) in comparison to regions more influenced by Atlantic climatic conditions.  Blanco-González et 97 

al. (2018) call for further regional work in Iberia on subsistence economies, demographic trends and 98 

ecological transformations, signalling that understanding past land cover and demographic change is 99 

a priority research area.   100 

 101 

The aim of this paper is to test how far regional vegetation changes and ecological transformation 102 

within eastern Iberia can be explained by archaeologically-derived records of prehistoric 103 

demographic change.  Regional trends in vegetation through the Holocene will be derived from 104 

synthesis of multiple pollen sequences, and inter-regional comparisons made between the northern 105 

and southern regions.  Data from the Balearic Islands will also be compared to the mainland: islands 106 

are useful as experimental laboratories where it can be shown they are isolated from human impact.  107 

Current evidence suggests that the Balearic Islands of Mallorca and Menorca were not settled until 108 

around 4320 cal. yr BP (Burjachs et al., 2017; Pérez-Jordà et al., 2018).  Following colonisation the 109 

Balearic Islands are connected to Iberia but are a distinct region.  Data from these islands can thus 110 

provide valuable reference conditions for natural (pre-human colonisation) vegetation dynamics, 111 

and for exploring the impact of known settlement and population expansion trends.  112 

 113 

METHODOLOGY AND MATERIALS 114 

 115 
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Palaeo-demographic data 116 

 117 

Prehistoric demographic data is inferred from a summed probability distribution approach utilising 118 

radiocarbon dates as surrogates for population (Shennan et al., 2013). Radiocarbon dates from 119 

archaeological sites were compiled from existing online databases and electronic and print 120 

publications (Martínez et al., 1997; Manen and Sabatier, 2003; Weninger et al., 2009; Van Strydonck 121 

and de Roock, 2011; Hinz et al., 2012; Aranda Jiménez et al., 2015; Balsera et al., 2015a, 2015b; 122 

Manning et al., 2015; Lillios et al., 2016; Oms et al., 2016; Paulsson, 2017; Vermeersch, 2017).  Dates 123 

are stored in a georeferenced database following Palmisano et al. (2017). A total of 3885 124 

uncalibrated radiocarbon dates from 814 sites have been collected. All the radiocarbon dates are 125 

from archaeological contexts, with the majority being samples of bone, charcoal and wood. 126 

Radiocarbon dates obtained from marine samples such as shell are not included to avoid the 127 

complicated issues arising from unknown or poorly understood marine reservoir offsets. Fewer than 128 

20 dates have standard deviations greater than 300 years. Biases caused by multiple dates from the 129 

same archaeological phase at a site are accounted for by aggregating uncalibrated radiocarbon dates 130 

from the same site that are within 100 years of each other and dividing by the number of dates that 131 

fall in this bin (Timpson et al., 2014). The probabilities from each calibrated date are combined to 132 

produce a summed probability distribution (SPD). The resulting summed probabilities are binned 133 

into 200-year time windows to match the time windows used in the analysis of pollen sequences.  134 

Archaeological periods are defined from literature, but it should be noted that archaeological 135 

periodisation for the Balearic Islands is distinct from the Iberian mainland.  All dates are given in 136 

calibrated years before present (cal. yr BP).  The timing of archaeological periods varies across 137 

mainland Iberia, but broadly the first Neolithic cultural material is dated to 7550-7450 cal. yr BP, and 138 

the peninsula experienced a rapid transition process from the Mesolithic to the Neolithic (García 139 

Puchol et al., 2009; López de Pablo and Gómez Puche, 2009; García Puchol and Salazar-García, 2017).  140 

Neolithic culture was established across northeast Spain by 7250 cal. yr BP (Oms et al., 2018).  The 141 

subdivisions of Antolín et al. (2015) are used for the Neolithic periods: early Neolithic (7350-6450 cal. 142 

yr BP), middle Neolithic (6450-5150 cal. yr BP) and late Neolithic/Chalcolithic (5150-4250 cal. yr BP); 143 

the start of the late Neolithic is slightly later in southeast Spain.  The Bronze Age is divided into three 144 

periods following Lull et al. (2013): early Bronze Age (4250-3500 cal. yr BP); late Bronze Age (3500-145 

3250 cal. yr BP) and final Bronze Age (3250-2850 cal. yr BP).   146 

 147 

It is not currently possible to use radiocarbon date distributions as a reliable palaeodemographic 148 

proxy after the end of the Bronze Age as the number of available dates for this period is too low: 149 
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relative dating via cultural material gradually replaces radiocarbon in the development of site 150 

chronologies.  Iberia came into contact with the Phoenicians and Greeks during the Iron Age (from 151 

the 9th century BC, ~2700 cal. yr BP) and colonies such as Emporion on the coast of Catalonia were 152 

established (founded in 2475 cal. yr BP). This brought eastern Iberia into the realm of written 153 

history.  Carthaginian colonies such as Cartagena came under Roman rule following the 2nd Punic 154 

War (late 3rd century BC, ~2200 cal. yr BP). The Romans dominated the Iberian Peninsula until the 155 

5th century AD (1500 cal. yr BP). After a period of Visigothic rule, almost the whole of eastern Iberia 156 

was conquered by Islamic Moors soon after ~700 AD (1250 cal. yr BP).  The Christian conquest was a 157 

slow process, not completed until the fall of Granada in 1492 AD (458 cal. yr BP).  Both Moslem and 158 

Christian Medieval periods saw a significant growth in population in Iberia and laid the economic 159 

foundations of the modern Spanish state. 160 

 161 

Modern and fossil pollen datasets 162 

 163 

Pollen count data from the European modern (Davis et al., 2013) and fossil pollen databases (EPD 164 

version Oct. 2017: Leydet, 2007-2017) were combined with additional fossil records provided by a 165 

network of data contributors to compile a dataset of 257 fossil records and 1798 modern pollen 166 

surface samples spanning the Mediterranean region. Pollen sequences with reliable chronologies 167 

(Giesecke et al., 2014) were selected for analysis and new sediment core chronologies were 168 

constructed for additional records using the ‘bacon’ R package (Blaauw & Christen, 2011). The pollen 169 

count data from each site were summed into 55 contiguous 200-year time windows between the 170 

periods 11000 and -65 cal. yr BP. Descriptions of the methodological approaches developed and 171 

applied to the pollen datasets are provided in Woodbridge et al. (2018) and Fyfe et al. (2018) along 172 

with detailed information on the harmonisation of the pollen taxonomy. The approach has allowed 173 

the identification of key vegetation types across the Mediterranean region as a whole.  This paper 174 

draws on a sub-set of 30 fossil sequences from 27 pollen sites and 112 modern surface samples for 175 

Mediterranean Spain (Figure 1).   176 

 177 

Palaeoclimate datasets 178 

 179 

The closest and most complete non-palynological proxy-based records for which data are available 180 

from eastern Iberia are used as palaeoclimate indicators for comparison with radiocarbon SPD and 181 

pollen-inferred land cover and indices.  Datasets have been normalised around their mean and 182 

standard deviation to produce z-scores as described in detail in Finné et al. (in review).  For 183 
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northeast Spain a multiproxy record of lake level and salinity has been used from Lake Estanya 184 

(Morellón et al., 2009).  The lake level record from Laguna de Medina (Reed et al., 2001) is used for 185 

southeast Spain.  There is no published proxy-climate dataset currently available from the Balearic 186 

Islands.   187 

 188 

Pollen data analysis 189 

 190 

An unsupervised data-driven approach was used to assign pollen samples to vegetation cluster 191 

groups for all modern and fossil sites within the Mediterranean (Fyfe et al., 2018; Woodbridge et al., 192 

2018). The approach is based on the similarity of assemblages using Ward’s hierarchical 193 

agglomerative clustering method (Ward, 1963). Analysis was undertaken using the ‘Rioja’ R package 194 

(Juggins, 2015). A phytosociological classification approach was used to identify the frequent and 195 

abundant pollen taxa within each cluster group based on its median and interquartile range (IQR). 196 

Interpretive name descriptors were given to each vegetation cluster using the phytosociological 197 

classification tables along with comparisons with other classification systems, land cover types 198 

defined by remote sensing and the results of previous studies (see Woodbridge et al., 2018).  199 

 200 

Non-metric multidimensional scaling (NMDS) was applied to the Spanish fossil datasets (using taxon 201 

percentage data aggregated into 200-year time windows) to explore major patterns.  NMDS was run 202 

using the ‘vegan’ R package (Oksanen et al., 2016). Data were square-root transformed, and 203 

dissimilarity was calculated using Bray-Curtis.  Simpson’s diversity index (Simpson, 1949) was 204 

calculated for each pollen sample and aggregated by region. Three pollen indicator groups were 205 

used to summarise key changes in the datasets and identify possible human impact in the records. 206 

This included: (a) the average non-arboreal pollen sum (%NAP); (b) the OJC index (sum of Olea, 207 

Juglans, Castanea), an established Mediterranean tree-crop indicator group (Mercuri et al., 2013a); 208 

and the anthropogenic pollen index (API: sum of Artemisia, Centaurea, Cichorioideae and Plantago, 209 

cereals, Urtica and Trifolium type) proposed by Mercuri et al. (2013b). For the OJC index the taxon 210 

Oleaceae was grouped with Olea. Analysts have routinely separated taxa within the Oleaceae family 211 

(e.g. Fraxinus, Phillyrea); Oleaceae is considered most likely to represent poorly-preserved Olea. 212 

Artemisia is included within the API to facilitate comparison with results from other Mediterranean 213 

regions, and the value of the API more broadly is discussed later. 214 

 215 

RESULTS 216 

 217 
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Palaeodemographic change in eastern Iberia 218 

 219 

The summed probability distribution (SPD) for radiocarbon dates for all 3885 dates (1438 sites) are 220 

shown on Figure 2a.  Deviations above or below a null model based on a simple theoretical model of 221 

population growth and plateau are highlighted, indicating periods with population growth or decline 222 

outside a 95% envelope of the long-term logistic trend.  An increase in population is inferred at the 223 

start of the Neolithic at 7500 cal. yr BP and the whole of the sequence between 7500 and 6000 cal. 224 

yr BP is above the logistic range. The population trend departs significantly over the long-run from a 225 

logistic model of population growth (p-value 0.001) at 5600-5300 (end of the Middle Neolithic) and 226 

5000-4700 cal. yr BP inferring population decline. Between these periods the trend indicates 227 

population increase at the start of the late Neolithic/Chalcolithic (around 5300-5000 cal. yr BP). 228 

Further significant increases in population occur from the early Bronze Age (Argaric period in 229 

southeast Spain, c. 4100 cal. yr BP) with population declining towards the start of the late Bronze 230 

Age (at 3500 cal. yr BP).  Significant population increases occur during the late Bronze Age (at 3200 231 

cal. yr BP) and during the final Bronze Age (3000 cal. yr BP).  There are insufficient dates within the 232 

Iron Age (after 2500 cal. yr BP) for meaningful interpretations.   233 

 234 

Regional divergences from the Eastern Iberia dataset are shown on Figures 2b-d.  Northeast Spain 235 

includes 1076 radiocarbon dates from 376 sites.  We assess to which degree the demographic 236 

patterns of each sub-region depart from the pan-regional trend via a permutation test following 237 

Crema et al. (2016). This method statistically assesses differences between the SPD of radiocarbon 238 

dates within each sub-region and the overall pan-regional average. Population is significantly above 239 

the overall pan-regional average throughout the Neolithic, with notable increases at the start of the 240 

Neolithic (at 7500 cal. yr BP) followed by a small decline towards the end of the early Neolithic (at 241 

6700 cal. yr BP).  A population increase is visible at the start of the late Neolithic/Chalcolithic period. 242 

The Bronze Age SPD is significantly below that of the whole dataset, and by the Iron Age the time 243 

series starts to become unreliable. There is an increase during the early Bronze Age (from 4000 cal. 244 

yr BP) and a decline at the start of the late Bronze Age.   245 

 246 

In southeast Spain, the 1219 dates from 306 sites largely follow the general background SDP trends, 247 

with the exception of a statistically-significant positive deviation (a population increase and greater 248 

than the pan-regional average) at the start of the Neolithic, and a significant negative deviation 249 

(population decrease and lower than the pan-regional average) during the middle Neolithic (6100-250 

5900 cal. yr BP).  SDP-inferred population is significantly higher throughout the late 251 



9 
 

Neolithic/Chalcolithic and the early Bronze Age.  SPD-inferred population rises steadily, with the 252 

peak in population recorded around 3700 cal. yr BP.  Significantly lower populations are inferred 253 

from the late Bronze Age on. 254 

 255 

For the Balearic Islands 1590 radiocarbon dates from 778 sites are used (Figure 2D).  The Balearic 256 

Islands have a much later date for the start of farming than mainland Iberia, and were the last major 257 

Mediterranean islands to be colonised (Burjachs et al., 2017).  Prior to the Bronze Age the islands are 258 

believed to be uninhabited. Step-wise increases in the SPD are recorded during the late Neolithic (at 259 

4800 cal. yr BP), at the start of the early Bronze Age (4200 cal. yr BP) at the start of the late Bronze 260 

Age (3400 cal. yr BP) and during the final Bronze Age (3000 cal. yr BP).  From 3400 cal. yr BP the SDP 261 

for the Balearic Islands is above the pan-regional trend.      262 

 263 

Pollen clusters: synthesis 264 

 265 

The 27 pollen sites used in the analysis are divided into three groups (Figure 1; Table 1), covering 266 

northeast Spain (7 sites), southeast Spain (12 sites) and the Balearic Islands (8 sites).  The results of 267 

the hierarchical clustering are presented on Figure 3.  The clusters follow the division of 268 

Mediterranean pollen assemblages into the 16 groups described in detail in Woodbridge et al. 269 

(2018).  Not all clusters described by Woodbridge et al. (2018) are represented in the Spanish pollen 270 

datasets.  The main clusters identified in the Spain pollen are 1.1 (sclerophyllous parkland), 1.3 271 

(steppe parkland), 4.0 (pine forest), 5.1 (pine woods) and 5.2 (pine steppe).  The pine clusters are 272 

differentiated on the basis of the proportions of pine and the co-occurring taxa within each group.  273 

Other groups of note include 1.2 (evergreen shrubland: Oleaceae) and 6.1 (deciduous oak woods).  274 

There are clear temporal changes in the representation of the clusters.  Sclerophyllous parkland and 275 

pine woods are dominant from 11000-9000 cal. yr BP.  From 9000 cal. yr BP pine forest and pine 276 

steppe both increase, co-incident with decline in pine woods.  From 8000 cal. yr BP sclerophyllous 277 

parkland declines whilst the number of sites classified as steppe parkland increase.  Between 9000-278 

3400 cal. yr BP deciduous oak woods are recognised, but not outside of this time period, and alder 279 

woods (8.1) are recognised between 4800-3200 cal. yr BP.  Evergreen shrubland (Oleaceae) becomes 280 

continuously recognised around 5200 cal. yr BP, declining after 2400 cal. yr BP but rising in the last 281 

millennium. Pine steppe has a step-wise increase at 4800 cal. yr BP, and steppe parkland rises at 282 

3000 cal. yr BP.  The pine forest group is not recognised after 1400 cal. yr BP. 283 

 284 
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There are insufficient pollen sites within the northeast and southeast mainland regions to make 285 

proportions of clusters in each time window meaningful.  Comparison between the Balearic Islands 286 

and the mainland show that on the mainland sclerophyllous scrub is limited to the early Holocene 287 

(pre-8000 cal. yr BP).  In contrast sclerophyllous scrub dominates and persists on the Balearic Islands.  288 

The Balearic Islands have a very restricted number of cluster groups, with evergreen shrubland 289 

(Oleaceae) from 5800 cal. yr BP, and steppe parkland not appearing until after 2000 cal. yr BP.  Pine 290 

groups are only sporadically recognised, with pine steppe best represented between 4800-2000 cal. 291 

yr BP. 292 

 293 

Analysis of pollen data 294 

 295 

The low numbers of pollen sites in each mainland region make comparison of the cluster-based 296 

results difficult because when cluster results are amalgamated for a region values can be highly 297 

influenced by individual sites.  Regional differences in vegetation patterns are thus explored using 298 

non-metric multidimensional scaling.  Performing NMDS with three axes resulting in a stress of 299 

0.175.  Biplots of taxon scores for axes 1 and 2 and axes 1 and 3 are shown on Figure 4, with taxa 300 

grouped by broad ecological meaning (sclerophyllous taxa, non-sclerophyllous arboreal taxa, the OJC 301 

group (plus Vitis), the API group, and other herbaceous taxa).  Taxa in the OJC group plot together in 302 

the ordination space, close to the centre of the plot.  The API taxa are widely dispersed along axis 1, 303 

but are tightly grouped on axis 2 (Figure 4a). The exception is Plantago lanceolata that lies distant 304 

from all other taxa, low on axis 2.  There is no clear separation between sclerophyllous and non-305 

sclerophyllous taxa on either biplot, and herbaceous taxa are widely dispersed.  These patterns are 306 

likely to be a function of the highly heterogeneous nature of Mediterranean vegetation.   307 

 308 

Biplots of site scores for each 200-year time window show groupings of sites from 9900-100 cal. yr 309 

BP (Figure 5a,b; labelled version in Supplementary Information).  The plots show a clear separation 310 

between the Balearic Islands and the mainland sites for most of the Holocene, with the sites on the 311 

Balearic Islands inhabiting the upper left quadrant.  Between 9900-4900 several mainland sites plot 312 

within the same ordination space as the Balearic Island records, demonstrating similar pollen 313 

assemblages (Antas, San Rafael and Elx).  Creixell remains grouped within the Balearic sites 314 

throughout the entire period.  From 6300-5300 cal. yr BP a distinct grouping of sites occurs in the 315 

lower left quadrant of the biplots.  This includes the high elevation sites in southeast Spain (Baza, 316 

Gador, Siles, Sabinar and Villaverde) but also includes the mid-elevation site at Navarrés and the 317 

northeast Spain site Lake Banyoles.  Beyond the grouping of the Balearic Islands sites and the high 318 
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elevation sites there are no other clear groupings in the dataset that persist through time.  Mainland 319 

sites from the southeast and northeast occupy similar areas of the biplots (e.g. see biplots for 6900 320 

and 3300 cal. yr BP). 321 

 322 

The difference in position of site across the three NMDS axes (chord distance) between adjacent 323 

time intervals is used as an estimate of the rate of change in pollen assemblages.  Values are 324 

averaged for each region to examine region-scale drivers of vegetation change (demographic and 325 

climatic change).  These mean chord distances are shown on Figure 6 alongside key pollen indices 326 

(NAP sum, the OJC and API indices and Simpson’s diversity index), the radiocarbon SPD and regional 327 

climate records.  Low values for mean NMDS chord distances imply stability in vegetation, whilst 328 

higher values indicate greater changes in assemblages between time windows.  In northeast Spain 329 

NMDS chord distance scores show distinct increases starting at 7500 cal. yr BP (peak at 7100 cal. yr 330 

BP), at 5100 cal. yr BP (peak at 4500 cal. yr BP) and at 3100 cal. yr BP.  Between these peaks values 331 

return to low levels implying stable vegetation between time windows.  The increase at 7500 cal. yr 332 

BP is coincident with increases in the NAP sum, a rise in Simpson’s diversity index and the first peak 333 

in the radiocarbon SDP.  The rise in mean NMDS chord distance score at 5100 cal. yr BP is coincident 334 

with an increase in radiocarbon SDP values.  The rise in mean NMDS chord distance score at 3100 335 

cal. yr BP corresponds with an increase in NAP sum, the first continuous OJC index curve and an 336 

increase in the API.  The Simpson’s diversity score suggests that diversity is highest from 6000 cal. yr 337 

BP, with greatest diversity at 500 cal. yr BP. 338 

 339 

The summary metrics for southeast Spain indicate a much higher NAP sum compared to northeast 340 

Spain during the early Holocene (around 40% for southeast Spain compared to 20% for the 341 

northeast sequences).  The API also shows high levels, in excess of 10% during the early Holocene 342 

when human impact should be minimal.  The mean NMDS chord distances show some suggestion of 343 

cyclic behaviour over millennial timescales, but peaks are more muted than in northeast Spain.  344 

Peaks occur around 9100, 7500, 6300, 4100 and 700 cal. yr BP.  The most notable change in the 345 

indices is an increase in the NAP sum from around 5500 cal. yr BP, which is coincident with a small 346 

step-increase in the API index, a major rise in the Simpson’s diversity index and the major increase in 347 

the radiocarbon SPD.  The Simpson’s diversity index falls to low levels at 2300 cal. yr BP from a peak 348 

at 3500 cal. yr BP. It then increases again, peaking at 1500 cal. yr BP, coincident with a second 349 

increase in the NAP sum. 350 

 351 
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In the Balearic Islands, the mean NMDS chord distance is highest at the start of the records (at 8700-352 

8300 cal. yr BP) and drops to ‘baseline’ values centred around 0.4.  This is much higher than values 353 

for northeast and southeast Spain, which have baselines around 0.2.  An isolated peak in mean 354 

NMDS chord distance scores for the Balearic Islands occurs at 2900 cal. yr BP, with increasing scores 355 

from 3500 cal. yr BP.  The peak coincides with the maximum radiocarbon SPD value.  Neither the OJC 356 

nor API trends bear any relationship to the radiocarbon SPD.  The Simpson’s diversity scores are 357 

broadly stable but decline from 3500 cal. yr BP. 358 

 359 

Correlation between palaeodemographics, palaeoclimate and pollen-based indices 360 

 361 

Correlation matrices for each region, for key pollen indicators shown on Figure 6, radiocarbon SPD 362 

and regional climatic records are given on Tables 2-4.  Correlation is assessed using Spearman’s Rank 363 

Correlation Coefficient (R-values) and statistically-significant results (p<0.05) are highlighted.  In 364 

northeast Spain significant positive correlations are found between radiocarbon SPD and the NMDS 365 

chord distance, NAP sum and OJC index.  The NAP sum is also positively correlated with the OJC 366 

index, API and Simpson’s diversity.  Simpson’s diversity is also positively correlated with the OJC 367 

index.  In southeast Spain the radiocarbon SPD is negatively correlated with the OJC index, and 368 

positively correlated with Simpson’s diversity.  Simpson’s diversity is also positively correlated with 369 

the NAP sum, but negatively correlated with the OJC index.  In the Balearic Islands radiocarbon SPD 370 

is positively correlated with the NAP sum, the OJC index and Simpson’s diversity, even major 371 

changes in demographics and pollen indices do not appear to align (Figure 6).  The NAP sum is 372 

positively correlated with the OJC and API, and OJC index with Simpson’s diversity.    373 

 374 

DISCUSSION 375 

 376 

Palaeodemographic trends in eastern Iberia, 10000-2500 cal. yr BP 377 

 378 

Clear palaeodemographic changes are seen in eastern Iberia through the compilation of 379 

archaeological radiocarbon dates and the production of summed probability distributions (Figure 380 

2a).  The start of the Neolithic across the whole study region is clearly marked by a step-wise 381 

increase in the summed probability distributions at 7500 cal. yr BP.  This accords well with the 382 

established timing of the Mesolithic/Neolithic transition in eastern Iberia (García Puchol et al., 2009; 383 

Fernández-López de Pablo and Gómez-Puche, 2009; García Puchol and Salazar-García, 2017; Oms et 384 

al., 2018).  There are regional differences between the north and south study areas, with a more 385 
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abrupt increase in the northeast, and a more gradual, and marginally earlier, increase in the 386 

southeast.  Oms et al. (2018) suggested full expansion of the Neolithic in the northeast was 387 

marginally delayed from the littoral locations favoured by the first Neolithic areas.  The significant 388 

demographic expansion in Figure 2 agrees with general radiocarbon-based models of population 389 

growth across Iberia as a whole (Balsera et al., 2015b) and in more detailed regional analyses that 390 

shows the earliest Neolithic population expansion in the east of the peninsula (Drake et al., 2017).  In 391 

the northeast (Figure 2b) a decline in the SPD around 6700 cal. yr BP implies a ‘bust’ following the 392 

demographic boom of the earlier Neolithic, a feature also recognised by Drake et al. (2017) in their 393 

regional analysis, and a pattern that follows trends identified in temperate Europe (Shennan et al., 394 

2013).  The pattern is replicated in the southeast with a shorter boom phase.  The causes of the 395 

boom and bust phenomena in Europe remain unclear, but a longer Neolithic ‘boom’ in the north 396 

east might reflect more successful agrarian strategies in the less arid northern regions around the 397 

Ebro valley and the foothills of the Pyrenees.  398 

 399 

The pattern of radiocarbon-inferred population demographics for southeast Spain from the late 400 

Neolithic/Chalcolithic to the late Bronze Age is similar to that of Lillios et al. (2016).  Lillios et al. 401 

(2016) do not observe major deviations from a null model based on logistic growth for the 402 

southeast, and observe pronounced differences between population trends in the southeast, 403 

southwest and northwest.  In the southeast settlement aggregation is observed in landscape survey 404 

and excavation (Blanco-González et al., 2018), and it is widely accepted that populations increased 405 

by up to as much as three times from late Neolithic levels with the development of the Argaric 406 

Bronze Age society in southeast Iberia (Aranda Jiménez et al., 2014).  The results show a long period 407 

growth that peaks around 4000 cal. yr BP.  Lillios et al. (2016) do not present radiocarbon SPD from 408 

the northeast across the late Neolithic/Chalcolithic and Bronze Age, but the region is included in the 409 

synthesis of Blanco-González et al. (2018).  Our results confirm those of Blanco-González et al. (2018) 410 

and indicate strong interregional differences in SPD-inferred demographic patterns: the major 411 

increases and declines in population in the southeast are not reflected in patterns in the northeast.  412 

Within the northeast the late Neolithic/Chalcolithic is characterised by continuity in cultural practice 413 

(including subsistence, settlement and technology) until c.4400 cal. yr BP (Blanco-González et al., 414 

2018), although increases in the radiocarbon SPD do not occur until 4000 cal. yr BP (Figure 2a).   415 

 416 

The precise timing of the first settlement on the Balearic Islands is not well defined (Burjachs et al., 417 

2017), but unequivocal evidence for human presence exists from the late Neolithic/Chalcolithic 418 

period (Ramis et al., 2002).  From 4300-3800 cal. yr BP sedentary cultures are well known.  No 419 
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published radiocarbon SPD for the islands is known.  The pattern in Figure 2d shows a small increase 420 

at 4700 cal. yr BP signalling early but low levels of cultural material, followed by increasing 421 

population levels after 4200 cal. yr BP.  Radiocarbon-inferred populations continue to increase 422 

through the Bronze Age reaching a peak in the Iron Age (c.2500 cal. yr BP) and are associated on the 423 

easternmost Balearic Islands (Mallorca and Menorca) with the indigenous Talaiotic Culture.  Pérez-424 

Jordà et al. (2018) indicate that the earliest settlers came with a complete agricultural package, 425 

including domesticated animals, cereals and legumes, with strong similarities to the Catalonian 426 

(northeast) subsistence traditions.   427 

 428 

Human impact on vegetation dynamics in eastern Iberia 429 

 430 

Assessing human drivers of vegetation change in Mediterranean regions is confounded by the 431 

multiple potential factors that can cause vegetational change, in particular climatic variations 432 

(Carrión, 2002).  There has also been much debate over the role of climate in cultural and 433 

demographic change within Iberia (e.g. Fernández-López de Pablo and Gómez-Puche, 2009; 434 

Bernabeu et al., 2016; Blanco-González et al., 2018), implying that separation of these drivers of land 435 

cover change may be difficult.  In spite of this the strong demographic signals that have emerged 436 

from the synthesis of radiocarbon dates can be compared to transformed pollen data to assess the 437 

extent to which population changes can explain changes in palaeovegetation patterns.   438 

 439 

Northeast Spain 440 

 441 

The results from northeast Spain indicate a significant correlation between the radiocarbon-inferred 442 

palaeodemographics and key human impact indicators (Table 2, Figure 6a).  Increased population 443 

levels are associated with higher total NAP values, suggesting increasing levels of open ground, and 444 

the correlation with the OJC index implies higher levels of tree cropping associated with higher 445 

population levels.  This does not mean taxa within the OJC group are domesticated early in 446 

Prehistory, and previous work does not demonstrate full domestication of these taxa until the third 447 

millennium cal. yr BP (Rodríguez-Ariza and Montes Moya, 2005). Prehistoric societies are likely to 448 

have transformed vegetation to promote such useful wild resources (e.g. Rowley-Conwy and Layton, 449 

2011). The positive relationship between demographic increases and rates of change is consistent 450 

with human transformation of land cover in response to higher population levels. There are 451 

insufficient pollen sites to evaluate changes in the dominant land cover types (clusters) between the 452 

northeast and southeast of Iberia; however, the overall pattern from the mainland sites shown on 453 
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Figure 3 implies fragmentation of pine-dominated vegetation communities and an expansion of pine 454 

steppe (cluster 5.2), particularly from 5000 cal. yr BP, and steppe parkland (cluster 1.3) during the 455 

earlier Neolithic period.  Recent links between cultural transitions and climatic change have been 456 

made (e.g. Cortés-Sánchez et al., 2012, Bernabeu Aubán et al., 2016), and episodes of abrupt climate 457 

change such as the 4.2 ka cal BP event have been linked to changing land use strategies and 458 

population levels (Blanco-González et al., 2018).  More favourable climatic conditions may have been 459 

one of a series of factors that promoted population expansion, presumably as a consequence of 460 

improved agrarian conditions.  The Neolithic archaeobotanical datasets demonstrate permanent 461 

fields rather than shifting cultivation (Antolín et al., 2015).  Gathering of wild food through the 462 

Neolithic period indicates intensive but sustainable exploitation of both domesticated and wild 463 

resources (Antolín and Jacomet, 2015), a pattern also seen in other parts of Europe (e.g. Bevan et al., 464 

2017).  465 

 466 

It is not possible to compare pollen-inferred land cover changes with archaeologically-inferred 467 

population levels after ~2500 cal. yr BP.  However, the main pollen classification changes after this 468 

time involved tree crops and anthropogenic indicators rather than overall tree cover.  Most of the 469 

Holocene decline in arboreal pollen in northeast Iberia occurred during prehistoric rather historic 470 

times, notably between 7300 and 2500 cal. yr BP.  This process of forest loss was almost certainly 471 

multi-causal, but the results presented here indicate that human agencies potentially contributed to 472 

this process soon after the arrival of Neolithic farming. 473 

 474 

Southeast Spain 475 

 476 

In contrast to the correlations between past population and vegetation indices in the northeast 477 

there are no statistically significant positive relationships observed in the southeast, other than 478 

between population levels and vegetation diversity.  Increased openness in the landscapes (i.e. 479 

higher NAP values) also results in greater diversity, although this correlation (+0.337) is not 480 

statistically significant.  This pattern can be expected if a greater degree of openness signifies a 481 

greater number of different vegetation communities.  Previous work at the European scale has 482 

indicated latitudinal gradients in diversity, with highest diversity levels in the most southern regions 483 

of Europe and this pattern has previously been observed using Holocene pollen data (Silvertown, 484 

1985).  The significant negative relationship between OJC and demographics demonstrates, at least 485 

in part, the difficulty in separating wild from domesticated taxa.  Finds of wild olive in Iberia have 486 

been recognised during the Neolithic (Antolín and Jacomet, 2015), but intensification of olive 487 
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production for trade does not begin until the Roman period in eastern Spain (Terral and Arnold-488 

Simard, 1996, and see Langgut et al., in review).  The value of these human impact indices, including 489 

the API, is thus questionable in this sub-region.  Many of the indicator taxa used are characteristic of 490 

disturbed open ground, and Artemisia can also be a strong indicator of arid conditions.  These are 491 

exactly the conditions that are found in southeast Spain through the early Holocene, a region which 492 

includes the most arid part of Europe.  In the analysis for southeast Spain, the API shows high values 493 

at the start of the Holocene (Figure 6), reducing to their lowest values before climbing again from 494 

around 6000 cal. yr BP.  It seems logical to interpret increases in the API with human impact, 495 

particularly as after 7500 cal. yr BP; however, this is clearly a complex indicator group that includes 496 

natural disturbance factors including fire and climatic factors, such as aridity.   497 

 498 

In spite of the lack of correlation between NAP sum and radiocarbon SPD across the whole record in 499 

southeast Spain, the major rise of population from the Chalcolithic to the late Bronze Age (between 500 

5500-3500 cal. yr BP) is strongly aligned with increases in these openness indicators, and this 501 

appears to strongly control vegetation diversity.  The NMDS chord distance indicates greater change 502 

in vegetation assemblages through this period also.  The increase in population levels by possibly up 503 

to three times through the Argaric period thus had a major impact on vegetation character in the 504 

region.  Per capita human impact also increased at the start of Bronze Age, as metallurgy led to 505 

exploitation of Iberia's abundant mineral resources. Mining and copper/bronze smelting has been 506 

reported from the start of the 5th millennium BP (Murillo-Barroso et al., 2017), but the major 507 

increases in production associated with the Argaric culture would have led to increased use of wood 508 

fuel, and hence in deforestation.  The imprint of Chalcolithic and Argaric culture population and 509 

economic rise can be seen in the mean NAP sum in the southeast Spanish pollen records, which 510 

declined progressively between 5000 and 3700 cal. yr BP.  It also led to a shift from pine 511 

forests/woods (clusters 2 and 3) to more open pine steppe (cluster 6). The demographic collapse 512 

during the late Bronze Age (from 3500 cal. yr BP) only led lead to a temporary reversal in the 513 

trajectory of vegetation change.  There was a minor re-expansion of arboreal vegetation between 514 

3600 and 3000 cal. yr BP. The limited scale of vegetation recovery may be a consequence of 515 

degradation of the landscape through grazing, combined with higher aridity, resulting in bioclimatic 516 

limits to the growth of woody vegetation (Carrión et al., 2007; Pérez-Obiol et al., 2011).  It is not 517 

possible to compare human population trends and pollen-inferred land cover change after ~2500 518 

cal. yr BP using the data presented here.  However, in many pollen records from southeast Spain, it 519 

is precisely at this point in time that large-scale human transformation of vegetation cover becomes 520 

clearly detectable, for example at Mar Menor on the coast of Murcia (Azuara, 2018). 521 



17 
 

 522 

Balearic Islands 523 

 524 

Several important contributions discuss both the general vegetation history (Burjachs et al., 2017) 525 

and patterns of land use (Pérez-Jordà et al., 2018) in the Balearic Islands.  Burjachs et al. (2017) 526 

established that groups of islands have differences in their vegetation histories, notably between the 527 

eastern Gymnesian islands (Mallorca and Menorca) versus the western Balearic Islands of Ibiza and 528 

Formentera. These broad patterns are supported by the analysis presented here.  Changes in 529 

vegetation assemblages between 6000 and 5000 cal. yr BP in the overall cluster-based analysis 530 

(Figure 3c) have been attributed to regional climatic change by Burjachs et al. (2017).  This might 531 

explain increases in the NAP sum, and the OJC index from 6000 cal. yr BP (Figure 6), reflecting a 532 

cooling trend and increasing aridity limiting growth of mesic woodland.  This demonstrates the 533 

sensitivity of vegetation in the western Mediterranean to natural climatic variability, at least through 534 

the early to mid-Holocene.  Comparison of pollen indices against continuous proxy-based climate 535 

records from the Balearic Islands is currently not possible owing to a lack of published regionally-536 

relevant climate records (see Finné et al., in review, for a more complete discussion on 537 

Mediterranean climate and teleconnections).   538 

 539 

Strong positive correlations between the radiocarbon SPD and human impact indicator groups (NAP 540 

sum and OJC) are a result of the rank-order correlation approach used: the highest values of 541 

demographics coincide with the highest levels of NAP and the OJC index, although the patterns are 542 

not immediately obvious from the curves presented (Figure 6C).  Once again, the utility of indices of 543 

human impact that are based on naturally-occurring taxa, particularly those whose abundances 544 

relate to a wide variety of disturbance processes, is questionable for periods before demonstrable 545 

human impact.  Pérez-Jordà et al. (2018) do not find strong evidence for Olea cultivation on the 546 

Balearic Islands until the Iron Age.  Olea is present and can be locally abundant in the sclerophyllous 547 

vegetation of the islands, as such it has been argued that consumption could be a result of gathering 548 

of wild fruits (and see Langgut et al., in review). 549 

 550 

CONCLUSIONS 551 

 552 

The synthesis of pollen data and comparison with a proxy for palaeodemographics demonstrates 553 

regional differences in the impact of population change on vegetation across eastern Iberia and the 554 

Balearic Islands.  In northeast Iberia patterns of demographic change are strongly linked to changes 555 
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in vegetation diversity and human impact indicator groups.  In the more arid southeast relationship 556 

patterns in human impact indicator types and past population demographics are less clear, but the 557 

rise in population through the Chalcolithic and early Bronze Age Los Millares and Argaric cultures 558 

results in more open landscapes and increased vegetation diversity.  Vegetation diversity decreases 559 

as population levels fall, but the landscape remains open, presumably as a result of soil degradation 560 

and increasing aridity into the late Holocene.  On the Balearic Islands, prior to initial human 561 

colonisation, climate was the primary pacemaker of vegetation in the early and middle Holocene. 562 

 563 

There was no clear synchronism between demographic trends in the three sub-regions of eastern 564 

Iberia between 10000 and 2500 cal. yr BP, other than the rise in population on the mainland at the 565 

start of Neolithic farming ~7600-7300 cal. yr BP.  In northeast Iberia population grew rapidly after 566 

this time and stayed high, whereas in southeast Spain the main demographic rise occurred much 567 

later (after 5300 cal. yr BP) and population subsequently declined (after 3500 cal. yr BP).  While 568 

regional population in southeastern Spain peaked soon after the start of the Argaric culture, on the 569 

Balearics the demographic maximum occurred early in the 3rd millennium cal BP, during the early 570 

Iron Age Talaiotic Culture.  As we can assume that these three sub-regions experienced a broadly 571 

similar climatic history, it can be inferred that climate changes were not the main pacemaker for 572 

long-term demographic trends for eastern Iberia as a whole, even though they must have 573 

contributed to societal changes in a variety of ways. For example, the 4.2 ka abrupt climate event 574 

coincided with, and may have influenced, the transition between the Late Chalcolithic Los Millares 575 

culture and the Early Bronze Age Argaric culture in southeast Iberia (Lull et al., 2015). However, it 576 

had no detectable consequences for demographic trends in this sub-region, with inferred population 577 

reaching a peak just after 4200 Cal yr BP. Nor does the pollen evidence analysed here indicate that 578 

this short-lived dry phase had any clearly detectable direct consequences for vegetation in eastern 579 

Iberia.  580 

 581 

Human impact indicator groups are challenging to interpret for many Mediterranean regions, as 582 

they include many taxa found within the natural vegetation.  Patterns in these indicator groups are 583 

simpler to interpret during the early Holocene prior to the first farming communities (when 584 

vegetation is driven by climate and natural disturbance processes) and the late Holocene (when 585 

vegetation is largely controlled by human transformation).  Disentangling the relative importance of 586 

natural and anthropogenic impact in the mid-Holocene is more difficult.  Pollen diversity in all 587 

regions is strongly related to radiocarbon-inferred population levels, and the NMDS chord distance 588 

shows a strong relationship with prehistoric demography.  This supports the assertion of Carrión et 589 
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al. (2010a) that human impacts should result in greater rates of change in vegetation.  The analysis 590 

presented here supports a role for climatic forcing of vegetation at the large scale, but clearly 591 

demonstrates the importance of population changes in shaping the abundance and diversity of taxa 592 

within broad biomes.   593 
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Table 1: sites used within the Spain case study analysis *indicates dataset from the EPD 854 

Site# SiteName site code LatDD LonDD Elevation Region References/contributor  

1 Amposta AMPOSTA 40.704 0.597 5 NESpain Pérez-Obiol 2007, Pérez-Obiol et 

al 2011 

2 Creixell CREIXELL 41.166 1.440 5 NESpain Burjachs and Schulte 2003, 

Carrión 2012, Burjachs and 

Expósito 2015 

3 Laguna Salada 

Chiprana* 

N-SAL 41.233 -0.166 150 NESpain EPD dataset: no citation 

4 Lake Banyoles* 

Banyoles SB2 

BANYOLES 42.133 2.750 175 NESpain Pérez-Obiol and Julià 1994 

Revelles et al 2015 

5 Hoya del Castillo* N-CAS 41.250 -0.500 250 NESpain Davis and Stevenson 2007 

6 Laguna Guallar* N-GUA 41.400 -0.216 330 NESpain Davis and Stevenson 2007 

7 Salada Pequeña* N-PEQ 41.033 -0.216 360 NESpain EPD dataset: no citation 

8 Roquetas de Mar* ROQUETAS 36.7944 -2.588 5 SESpain Pantaleón-Cano et al 2003 

9 San Rafael* SANRAFA 36.773 -2.601 5 SESpain Pantaleón-Cano et al 2003 

10 Elx (Alacant) ELX 38.174 -0.752 10 SESpain Burjachs et al 1997, Carrión 2012 

11 Antas* ANTAS 37.208 -1.823 10 SESpain Pantaleón-Cano et al 2003 

12 Navarrés * NAVARRES, NAVA 

1+2, NAVARRE3 

39.070 -0.680 225 SESpain Carrión and Dupré-Olivier 1996; 

Carrión and van Geel 1999 

13 Salines (Alacant) SALINES 38.500 -0.888 500 SESpain Giralt et al 1999, Carrión 2012, 

Burjachs et al 2016 

14 Villaverde VILLAVERDE 38.800 -2.220 890 SESpain Carrión et al 2001a 

15 Siles SILES 38.440 -2.510 1050 SESpain Carrión et al 2001b 

16 Sabinar SABINAR 38.200 -2.116 1130 SESpain Carrión et al 2004 

17 Gador GADOR 36.930 -2.910 1650 SESpain Carrión et al 2003 

18 Cañada de la Cruz CANADACRUZ 38.066 -2.700 1650 SESpain Carrión et al 2001b 

19 Baza BAZA 37.233 -2.700 1850 SESpain Carrión et al 2007 

20 Prat de Vila 

(Eivissa) 

PRATDEVILA 38.915 1.435 5 Balearic Burjachs et al 2017 

21 Albufera Alcúdia 

(Majorque)* 

ALCUDIA 39.792 3.119 5 Balearic Burjachs et al 1994, Burjachs et al 

2017 

22 Es Grau (Menorca) ESGRAU 39.948 4.258 30 Balearic Burjachs 2006 

23 Son Bou* SONBOU 39.924 4.027 15 Balearic Yll et al 1997 

24 Algendar* ALGENDAR 39.940 3.958 20 Balearic Yll et al 1995 

25 Cala'n Porter* CPORTER 39.870 4.131 25 Balearic Yll et al 1997 

26 Hort Timoner* HTIMONER 39.875 4.126 40 Balearic Yll et al 1997 

27 Cala Galdana* GALDANA 39.900 4.000 50 Balearic Yll et al 1995 

A Laguna de Medina -    SESpain Reed et al 2001 

B Lake Estanya -    NESpain Morellón et al 2009 
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Table 2: Northeast Spain Spearmans’ Rank Correlation Coefficient r-value matrix for the period 856 

10000-2500 cal. yr BP.  Shaded boxes indicate p<0.05. 857 

 

14C 

SPD 

NMDS chord 

distance NAP sum OJC index API 

Simpson’s 

diversity 

Estanya z-

score 

14C SPD 1.000 0.269 0.647 0.408 0.324 0.287 -0.013 

NMDS chord 

distance 

 

1.000 0.228 0.031 0.128 0.092 -0.009 

NAP sum   1.000 0.415 0.747 0.607 0.029 

OJC index    1.000 0.265 0.521 -0.153 

API     1.000 0.424 0.0153 

Simpson’s 

diversity 

     

1.000 -0.265 

Estanya 

z-score 

      

1.000 
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Table 3: Southeast Spain Spearmans’ Rank Correlation Coefficient r-value matrix for the period 9000-859 

2500 cal. yr BP.  Shaded boxes indicate p<0.05. 860 

 

14C 

SPD 

NMDS 

chord 

distance 

NAP 

sum 

OJC 

index API 

Simpson’s 

diversity 

Laguna de 

Medina z-

score 

14C SPD 1.000 0.338 0.008 -0.585 -0.152 0.387 0.115 

NMDS chord 

distance  1.000 0.035 -0.220 -0.090 0.156 0.135 

NAP sum   1.000 -0.322 0.466 0.431 0.232 

OJC index    1.000 -0.073 -0.354 -0.189 

API     1.000 0.068 0.098 

Simpson’s 

diversity      1.000 0.073 

Laguna de 

Medina  

z-score       1.000 
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Table 4: Balearic Islands Spearmans’ Rank Correlation Coefficient r-value matrix for the period 9000-862 

2000 cal. yr BP.  Shaded boxes indicate p<0.05.  863 

 14C 

SPD 

nMDS chord 

distance 

NAP 

sum 

OJC 

index API 

Simpson’s 

diversity 

14C SPD 1.000 -0.095 0.739 0.734 -0.214 0.345 

nMDS chord 

distance  1.000 -0.300 0.019 -0.313 0.049 

NAP sum   1.000 0.762 0.306 0.438 

OJC index    1.000 0.138 0.435 

API     1.000 0.025 

Simpson’s 

diversity      1.000 
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Figure 1: location of pollen samples (sub-fossil and surface samples) and archaeological radiocarbon 865 

dates used within the analysis. The division between northeast and southeast Spain is indicated by 866 

the dashed line. Pollen site numbers are the same as those in Table 1. Palaeoclimate sequences: (A) 867 

Laguna de Medina (Reed et al. 2001); (B) Lake Estanya (Morellón et al. 2009). 868 
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Figure 2: Summed Probability Distributions (SDP) of un-normalised calibrated radiocarbon dates (cal. 870 

yr BP).  A: all radiocarbon dates against a fitted logistic model (95% confidence); B: north-east Spain, 871 

with SDP for all eastern Spain dates; C: south-east Spain, with SDP for all Spain dates; D: Balearic 872 

Islands, with SDP for all Spain dates.  Vertical bands indicate negative or positive deviations from the 873 

null model (panel A) or all Spain dates (B-D). 874 
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Figure 3: relative proportions of pollen samples within each vegetation cluster in each time window, 876 

for (A) all sites, (B) sites on mainland Spain (northeast and southeast regions combined) and (C) 877 

Balearic Islands. Radiocarbon summed probability distributions show results for all dates collated. 878 

Time windows with insufficient radiocarbon dates for reliable SDP are shown in white. 879 
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Figure 4: taxa plots from non-metric multidimensional scaling (NMDS) analysis of all sites, showing 881 

(A) axis 1 vs 2 and (B) axis 1 vs 3. Taxa are grouped in broad ecological or anthropogenic indicator 882 

classes. 883 
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Figure 5: site plots from non-metric multidimensional scaling (NMDS) analysis in each time interval. 885 

(A) 9900-5100 cal. yr BP; (B): 4900-100 cal. yr BP. Plot shows axis 1 vs 2 scores. Green is Balearic 886 

sites, black northeast Spanish sites and blue southeast Spanish sites. [labelled version in 887 

Supplementary Information] 888 
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Figure 6: regional plots of pollen assemblage change (mean NMDS chord distance), sum of non-891 

arboreal pollen types, key anthropogenic indicator groups (API and OJC), Simpson’s diversity index, 892 

radiocarbon summed probability distributions for each region and z-scores for regional proxy-893 

climate records (Lake Estanya: Morellón et al 2009; Laguna de Medina: Reed et al 2001).  894 
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