774 research outputs found

    Early transitions and tertiary enrolment: The cumulative impact of primary and secondary effects on entering university in Germany

    Full text link
    Our aim is to assess how the number of working class students entering German universities can effectively be increased. Therefore, we estimate the proportion of students from the working class that would successfully enter university if certain policy interventions were in place to eliminate primary effects (performance differentials between social classes) and/or secondary effects (choice differentials net of performance) at different transition points. We extend previous research by analysing the sequence of transitions between elementary school enrolment and university enrolment and by accounting for the impact that manipulations at earlier transitions have on the performance distribution and size of the student ‘risk-set’ at subsequent transitions. To this end, we develop a novel simulation procedure which also seeks to find viable solutions to the shortcomings in the German data landscape. Our findings show that interventions are most effective if they take place early in the educational career. Neutralizing secondary effects at the transition to upper secondary school proves to be the single most effective means to increase participation rates in tertiary education among working class students. However, this comes at the expense of lower average performance levels. (DIPF/author

    Efficient and robust reconstruction of botanical branching structure from laser scanned points

    Get PDF
    This paper presents a reconstruction pipeline for recovering branching structure of trees from laser scanned data points. The process is made up of two main blocks: segmentation and reconstruction. Based on a variational k-means clustering algorithm, cylindrical components and ramified regions of data points are identified and located. An adjacency graph is then built from neighborhood information of components. Simple heuristics allow us to extract a skeleton structure and identify branches from the graph. Finally, a B-spline model is computed to give a compact and accurate reconstruction of the branching system. © 2009 IEEE.published_or_final_versionThe 11th IEEE International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics '09), Huangshan, China, 19-21 August 2009. In Proceedings of 11th CAD/Graphics, 2009, p. 572-57

    Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentine-5 and its precursor

    Get PDF
    Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column average dry air mole fractions (XCH4). The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth\u27s surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 ”m (S5 only) and 2.35 ”m (both, S5 and S5P) wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters

    Muons tomography applied to geosciences and volcanology

    Full text link
    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Dif- ferent approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of informations but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.Comment: Invited talk at the 6th conference on New Developments In Photodetection (NDIP'11), Lyon-France, July 4-8, 2011; Nuclear Instruments and Methods in Physics Research Section A, 201

    L'Ɠil Ă©coute

    Get PDF
    Consultable en ligne sur Revue.org, URL : http://perspective.revues.org/1193International audienc

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    ‱ Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. ‱ Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. ‱ Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. ‱ No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentine-5 and its precursor

    Get PDF
    Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column average dry air mole fractions (XCH4). The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth\u27s surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 ”m (S5 only) and 2.35 ”m (both, S5 and S5P) wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters

    The HITRAN2016 Molecular Spectroscopic Database

    Get PDF
    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided

    « L’Ɠil Ă©coute »

    Get PDF
    Les 8 et 9 juillet 2010 Ă  Munich, Willibald SauerlĂ€nder a accordĂ© deux longs entretiens Ă  Perspective, chez lui, dans sa bibliothĂšque, et au Zentralinstitut fĂŒr Kunstgeschichte, dont il a Ă©tĂ© le directeur pendant vingt ans (1970-1989). Afin de cerner les diffĂ©rentes facettes de ce spĂ©cialiste de l’art mĂ©diĂ©val français, et notamment de la sculpture, mais aussi grand connaisseur de Poussin et de Houdon, Perspective a demandĂ© Ă  Pierre-Yves Le Pogam, conservateur en chef au dĂ©partement des sculp..

    Homophily and Contagion Are Generically Confounded in Observational Social Network Studies

    Full text link
    We consider processes on social networks that can potentially involve three factors: homophily, or the formation of social ties due to matching individual traits; social contagion, also known as social influence; and the causal effect of an individual's covariates on their behavior or other measurable responses. We show that, generically, all of these are confounded with each other. Distinguishing them from one another requires strong assumptions on the parametrization of the social process or on the adequacy of the covariates used (or both). In particular we demonstrate, with simple examples, that asymmetries in regression coefficients cannot identify causal effects, and that very simple models of imitation (a form of social contagion) can produce substantial correlations between an individual's enduring traits and their choices, even when there is no intrinsic affinity between them. We also suggest some possible constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt
    • 

    corecore