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a b s t r a c t 

This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compila- 

tion. The new edition replaces the previous HITRAN edition of 2012 and its updates during the inter- 

vening years. The HITRAN molecular absorption compilation is composed of five major components: the 

traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, in- 

frared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, 

collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums 

that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral cov- 

erage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, 

isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the 

Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules impor- 

tant in different areas of atmospheric science have been added to the database. The compilation can be 

accessed through www.hitran.org . Most of the HITRAN data have now been cast into an underlying rela- 

tional database structure that offers many advantages over the long-standing sequential text-based struc- 

ture. The new structure empowers the user in many ways. It enables the incorporation of an extended set 

of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output 

formats, and very convenient searching, filtering, and plotting of data. A powerful application program- 

ming interface making use of structured query language (SQL) features for higher-level applications of 

HITRAN is also provided. 

Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

This article describes the data and software that have been 

added, modified, or enhanced in the HITRAN ( Hi gh Resolution 

Tran smission) compilation since the previous edition of 2012 

[1] (hereafter called HITRAN2012 in the text). The line-by-line por- 

tion and the absorption cross-sections of the new edition, hereafter 

called HITRAN2016, have now been cast into an underlying rela- 

tional database structure as opposed to the long-standing fixed- 

length ASCII record format. A user-friendly powerful internet tool, 

HITRAN online (accessible through www.hitran.org ), is provided to 

the user to query, filter, and plot sections of the data and to re- 

trieve outputs in a host of convenient formats (see Hill et al. [2] ). 

The HITRAN compilation is composed of several components 

that include ( 1 ) line-by-line spectroscopic parameters for high res- 

olution molecular absorption and radiance calculations (from the 

microwave through the ultraviolet region of the spectrum); ( 2 ) in- 

frared absorption cross-sections (generally representing absorption 

by molecules that have very dense spectra or many low-lying vi- 

brational modes); ( 3 ) collision-induced absorption datasets; ( 4 ) ta- 

bles of aerosol refractive indices; and ( 5 ) global data that apply in 

a general manner to the archive. The updates to these five portions 

of HITRAN as well as the new underlying system of data structure 

with accompanying internet user interface will be discussed in the 

following sections. 

The new edition of the HITRAN database substantially increases 

the database’s potential to accurately model radiative processes in 

the atmosphere of the Earth and other planets. Apart from improv- 

ing the accuracy of the existing parameters, more parameters have 

been introduced, and new bands and isotopologues added. Two 

gases (C 2 N 2 and COCl 2 ) are introduced to the database for the first 

time. Finally, a very dramatic expansion of the cross-sectional part 

of the database is featured in this new edition. 

It is necessary to call attention to some specifics of the HITRAN 

database. The units used throughout HITRAN editions including 

this one do not strictly adhere to the SI system for both historical 

and application-specific reasons. Thus cm 

−1 (reciprocal centimeter) 

is seen throughout, as is atm (atmosphere) for pressure (in SI units 

of Pascals, 101,325 Pa = 1 atm). Also, the symbol ν is used through- 

out for line position in cm 

−1 , thereby dropping the tilde ( ˜ ν) that is 

the official designation of wavenumber. The HITRAN unit for inten- 

sity is traditionally expressed as cm 

-1 /(molecule cm 

-2 ) rather than 

simplifying to the equivalent cm molecule -1 . 

1.1. Overview of parameters (including new ones) 

The traditional and probably most applied portion of HITRAN is 

the line list of high-resolution spectral parameters. These line-by- 

line parameters reflect values of individual transitions between en- 

ergy levels of rovibronic states that are required by high-resolution 

radiative-transfer codes. These parameters are shown in Tables 

1 and 2 . Table 1 gives an overview of parameters that are tradition- 

ally provided in the “.par” format as per HITRAN2004 [3] formal- 

ism as well as broadening and shift parameters due to the pres- 

sure of H 2 , He and CO 2 (see Wilzewski et al. [4] , Hill et al. [2] and 

Kochanov et al. [5] for details). Table 2 provides information on the 

parameters required for non-Voigt line-shape representations (see 

Wcisło et al. [6] , Hill et al. [2] and Kochanov et al. [5] for details). 

Ideally, they would arise from theoretically-consistent calculations; 

however, since the emphasis in HITRAN is to provide the user with 

the most accurate values available, they are often the values ob- 

tained from controlled laboratory measurements when quantum- 

mechanical calculations are not yet of comparable accuracy. Nev- 

ertheless, theoretical calculations and semi-empirical formulae are 

widely used in HITRAN to both interpolate and extrapolate needed 

parameters for transitions missing from the limited observed set. 

Section 2 presents a description of changes made to the line- 

by-line portion of HITRAN. It is organized in the order of the 

molecules in HITRAN (a sequential number related to the entry 

of the molecule into HITRAN). The discussions in the molecular 

sub-sections give an overview of the addition of new bands, re- 

placement of line positions and/or intensities, and new or modified 

line-shape parameters where applicable. There are also citations to 

more detailed studies of the modifications. 

With the recent advances in both laboratory spectrometers and 

the power of theoretical treatments such as ab initio calculations, 

the accuracy and the access to weak, yet important, transitions 

have had a big impact on this edition of HITRAN. 

Table 3 provides an overview of changes and additions to the 

database with respect to the HITRAN2012 edition. 

The line-by-line parameters (as well as the portion of HITRAN 

devoted to cross-sections) have now been cast into a relational 

database structure, described in Section 6.1 . This underlying struc- 

ture has many advantages that were not available in the previ- 

ous fixed-length format of previous HITRAN editions. The database 

is now able to add many more parameters (becoming necessary 
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Table 1 

Parameter identifiers in HITRAN online . 

Parameters from the HITRAN2004 format in HITRANonline 

Parameter Units Identifier a Description 

Molecule ID – molec_id HITRAN integer identifying the molecule 

Isotopologue ID – local_iso_id HITRAN integer identifying the isotopologue of a particular molecule 

ν cm 

−1 nu Transition wavenumber 

S cm 

−1 /(molecule cm 

−2 ) sw Transition intensity, weighted by isotopologue abundance 

A s −1 a Einstein A -coefficient 

γ air cm 

−1 atm 

−1 gamma_air Air-broadened Lorentzian half width at half maximum (HWHM) 

coefficient (for Voigt lineshape) 

γ self cm 

−1 atm 

−1 gamma_self Self-broadened Lorentzian HWHM coefficient (for Voigt lineshape) 

E ′ ′ cm 

−1 elower Lower-state energy 

n air – n_air Temperature-dependence exponent for γ air 

δair cm 

−1 atm 

−1 delta_air Air pressure-induced line shift 

V ′ b – global_upper_quanta Upper-state “global” quanta in HITRAN2004 format 

V ′ ′ b – global_lower_quanta Lower-state “global” quanta in HITRAN2004 format 

Q ′ b – local_upper_quanta Upper-state “local” quanta in HITRAN2004 format 

Q ′ ′ b – local_lower_quanta Lower-state “local” quanta in HITRAN2004 format 

Ierr b ierr Ordered list of indices corresponding to uncertainty estimates of 

transition parameters 

Iref b iref Ordered list of reference identifiers for transition parameters 

g ′ – gp Upper-state statistical weight 

g ′ ′ – gpp Lower-state statistical weight 

Metadata and other special parameters 

Transition ID – trans_id Unique integer identifying the transition 

Global Isotopologue ID – global_iso_id Global integer ID identifying the isotopologue (unique across the 

whole database) 

qns ׳ – statep Upper-state quantum numbers in HITRAN online format 

qns ׳׳ – statepp Lower-state quantum numbers in HITRAN online format 

.par line – par_line Complete representation of the line in the HITRAN2004 160-character 

format 

Parameters for broadening by new perturbing species, X c , and line-mixing parameters 

γ X cm 

−1 atm 

−1 gamma_X Lorentzian HWHM coefficient (for Voigt lineshape) for broadening by 

perturber X 

n X – n_X Temperature-dependence exponent for γ X 

n self – n_self Temperature-dependence exponent for γ self 

δself cm 

−1 atm 

−1 delta_self Self-induced pressure line shift 

δ′ 
air cm 

−1 atm 

−1 K −1 deltap_air Linear temperature dependence coefficient for δair 

δ′ 
self cm 

−1 atm 

−1 K −1 deltap_self Linear temperature dependence coefficient for δself 

δ′ 
H 2 

cm 

−1 atm 

−1 K −1 deltap_H2 Linear temperature dependence coefficient for δH 2 

δX cm 

−1 atm 

−1 delta_X Pressure-induced line shift due to perturber X 

Y air cm 

−1 atm 

−1 y_air First-order (Rosenkranz) line coupling coefficient within Voigt profile; 

air-broadened environment 

Y self cm 

−1 atm 

−1 y_self First-order (Rosenkranz) line coupling coefficient within Voigt profile; 

air-broadened environment 

a The third column header, identifier, denotes the names of the variables used in the new relational database structure. b These parameters are given in Table 1 in the 

way they appear in the “.par” file. However, one should note that they are stored in a flexible and substantially more detailed way in the database. c The names containing 

X correspond to the foreign broadeners, where X is the name of the perturbing species (CO 2 , H 2 , He). Unless explicitly given, the parameters imply transition between 

lower and upper states; double primes ( ′′ ) and primes ( ′ ) are for lower and upper energy states, respectively. 

not only for planetary atmosphere applications, but also to sat- 

isfy sophisticated remote-sensing requirements), is not limited to 

constraints of field length, and can accommodate functional forms 

for parameters. It also allows for a much more robust way for the 

managers to check for errors, whether they be by transcription, vi- 

olated selection rules, incorrect quantum assignments, etc. 

1.2. New line-shape representations 

Shapes of individual transitions in molecular spectra at atmo- 

spheric conditions are mainly determined by collisions and the 

Doppler effect. In the simplest case these two effects can be han- 

dled with the Voigt profile, where the collisions are described 

just as a single-parameter exponential relaxation. In the previ- 

ous editions of HITRAN, the line shapes, with a very few excep- 

tions, were represented with the Voigt profile. It turns out, how- 

ever, that this model is too simple to reproduce atmospheric spec- 

tra with accuracy at the sub-percent level (see for instance Refs. 

[9,10] ). For some light molecules, in particular for molecular hy- 

drogen (important for research on dense atmospheres of gas gi- 

ants), the non-Voigt effects are much more pronounced [6] . At this 

point the database provides Voigt (for every transition), and speed- 

dependent Voigt, Galatry [11] and Hartmann-Tran [7,8] profiles pa- 

rameters where they had been measured and validated. 

Ab initio line-shape models, originating from first principles, 

are far too complex to be simply implemented in a line-by-line 

spectroscopic database. Therefore, a compromise between sim- 

plicity of the model and the fidelity of experimental spectra 

representation had to be found. In recent decades, a number 

of phenomenological models that take into account both speed- 

dependent effects and velocity-changing collisions had been ad- 

vanced. Recently, Tran et al. developed a computationally efficient 

algorithm [7,8] for calculating one of them, the partially-correlated 

speed-dependent hard-collision profile [12] with quadratic speed 

dependence [9] . An IUPAC (International Union of Pure and Ap- 

plied Chemistry) task group recommended the use of this pro- 

file for high-resolution spectra representation [13] and call it the 

Hartmann-Tran (HT) profile. Ngo et al. [14] demonstrated that the 

HT profile well reconstructs the line shapes of the most important 

atmospheric molecules. Therefore, the HT profile has been adopted 

as the default beyond-Voigt profile in HITRAN. For measurements 

with sufficiently high accuracy, we encourage spectroscopists to re- 

port not only the basic Voigt-profile parameters, but also the HT 

parameters. The details about the HT parametrization adopted in 
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Table 2 

Parameter identifiers in HITRAN online for non-Voigt parameters. 

Parameters for non-Voigt parameters 

Parameter Units Identifier a Description 

γ SDV 
0 ( X; 296 ) cm 

−1 atm 

−1 gamma_SDV_0_X _296 Air-(Self-) broadened Lorentzian HWHM coefficient in 296 K (for SDV profile) 

γ SDV 
2 ( X; 296 ) cm 

−1 atm 

−1 gamma_SDV_2_X _296 Speed-dependence of the SDV halfwidth in 296 K; air-(self-) broadened case 

δSDV 
0 ( X; 296 ) cm 

−1 atm 

−1 delta_SDV_0_X _296 Air-(Self-) induced pressure line shift in 296 K (for SDV profile) 

δ
′ SDV ( X ; 296) cm 

−1 atm 

−1 K −1 deltap_SDV_X_296 Linear temperature dependence coefficient for δSDV 
0 ( X; 296 ) 

n SDV ( X ; 296) – n_SDV_X_296 Temperature dependence exponent around 296 K for γ SDV 
0 ( X; 296 ) 

Y SDV 
X (296) cm 

−1 atm 

−1 Y_SDV_X_296 First-order (Rosenkranz) line coupling coefficient within SDV b profile; air-(self-) broadened case 

γ G 
X cm 

−1 atm 

−1 gamma_g_X Air-(Self-) broadened Lorentzian HWHM coefficient in 296 K (for Galatry profile) 

βG 
X cm 

−1 atm 

−1 beta_g_X Dicke narrowing parameter for the air- (self-) broadened Galatry line profile 

γ HT 
0 (X; T re f ) cm 

−1 atm 

−1 gamma_HT_0_X_T Speed-averaged HTP halfwidth in temperature range around T = T ref 
d due to perturber X 

n HT ( X; T ref ) – n_HT_X_T Temperature dependence exponent in the range corresponding to T = T ref for γ HT 
0 (X; T re f ) 

γ HT 
2 (X; T re f ) cm 

−1 atm 

−1 gamma_HT_2_X_T Speed-dependence of the HTP halfwidth in temperature range around T = T ref due to perturber X . 

δHT 
0 (X; T re f ) cm 

−1 atm 

−1 delta_HT_0_X_T Speed-averaged line shift of the HTP in temperature range around T = T ref due to perturber X 

δ′ HT ( X; T ref ) cm 

−1 atm 

−1 K −1 deltap_HT_0_X_T Linear temperature dependence coefficient for δHT 
0 (X; T re f ) in temperature range around T = T ref 

δHT 
2 (X; T re f ) cm 

−1 atm 

−1 delta_HT_2_X_T Speed-dependence of the HTP line shift in temperature range around T = T ref due to perturber X 

νHT 
VC (X ) cm 

−1 atm 

−1 nu_HT_X Frequency of velocity changing collisions in the HT profile formalism 

κHT ( X ) – kappa_HT_X Temperature dependence of νHT 
VC (X ) 

ηHT – eta_HT_X Correlation parameter in HT profile formalism 

Y HT ( X ; 296) cm 

−1 atm 

−1 Y_HT_X_296 First-order (Rosenkranz) line coupling coefficient within HT profile; air-(self-) broadened case 

a The third column header, identifier, denotes the names of the variables used in the new relational database structure. The names containing the X literal 

correspond to air- or self- broadening 
b SDV stands for speed-dependent Voigt. 
c HT stands for the Hartmann-Tran profile [7,8] . 
d For the four temperature ranges and corresponding T ref values consult Wcisło et al. [6] and Sections 1.2 and 2.45 . 

HITRAN are given in Wcisło et al. [6] . Apart from new parameters 

introduced to represent this profile, one should note that these pa- 

rameters are also provided at four different temperature ranges: 0–

100 K, 100–200 K, 200–400 K and T > 400 K. The reference parame- 

ters are given at the following reference temperatures: 50 K, 150 K, 

296 K and 700 K respectively. 

It should be noted that even if the parameters of some more 

advanced model (preferably HT) are now provided in HITRAN for 

a growing number of transitions, the Voigt-profile parameters are 

still given for every transition in HITRAN. Therefore, for users not 

interested in making use of sophisticated line shapes, the present 

version of HITRAN remains compatible with the previous ones. 

2. LIne-by-line modifications 

2.1. H 2 O (molecule 1) 

The HITRAN2016 edition has undergone a substantial revision 

and expansion of the database of water vapor. 

In HITRAN2012 [1] a very large expansion of the dynamic range 

of the line intensities for non-deuterated isotopologues of water 

vapor was implemented, thanks to the ab initio calculations from 

the BT2 line list [15] and, in selected spectral intervals, Lodi et 

al. [16] for the principal isotopologue and from Lodi and Ten- 

nyson for H 2 
18 O and H 2 

17 O [17] . The ab initio results were replaced 

with high-quality experimental or-semi-empirical data wherever 

possible. In HITRAN2016, we have done a similar expansion of 

the dynamic (and spectral) range of the singly-deuterated isotopo- 

logues. In addition, the D 2 
16 O isotopologue makes its debut in the 

database. D 2 O has a very low natural abundance on Earth but is 

measurable in the atmospheres of other planets, notably Venus 

which has an enhanced deuterium content [18] raising the im- 

portance of D 2 O. Also, for fitting d -enriched HDO laboratory spec- 

tra, a good D 2 O line list is essential. For this reason, D 2 O transi- 

tions have been included using a lower intensity cutoff of 10 −32 

cm 

−1 /(molecule ·cm 

−2 ) once isotopic abundance is accounted for. 

A dedicated paper detailing the update of the water-vapor 

dataset in HITRAN2016 along with atmospheric and laboratory val- 

idations is planned. Here we summarize only the most important 

details. 

2.1.1. Line positions and intensities 

This update is informed by the work of an International Union 

of Pure and Applied Chemistry (IUPAC) task group which produced 

systematic sets of empirical energy levels (and hence transition 

frequencies) for all the stable isotopologues of water [19–22] . In 

HITRAN2012 non-deuterated isotopologues already benefited from 

the availability of the IUPAC dataset of empirically-derived energy 

levels (and transition wavenumbers derived from them), and we 

extend this to the deuterated species here. However, some impor- 

tant caveats of that compilation have to be noted. 

a) The accuracy of some of the transitions generated from the 

IUPAC set may be inferior to individual high-accuracy exper- 

iments. Therefore, just like in HITRAN2012, we have given 

preference to the experimental line position data from previ- 

ous HITRAN editions if the uncertainty code was 5 (0.0 0 0 01–

0.0 0 01 cm 

−1 ) or higher. Comparisons with atmospheric spectra 

have shown that this was a correct choice. 

b) The datasets constructed in Refs. [19–22] do not include ex- 

perimental data from the papers published after them. Quite a 

few new levels have become available over the years and some 

reassignments were in order (see for instance Mikhailenko et 

al. [23] and Liu et al. [24] ). We partially updated the IUPAC 

datasets here. In particular, for the HD 

17 O and HD 

18 O species, 

levels from Kyuberis et al. [25] were used. For H 2 
18 O and H 2 

17 O, 

and to a lesser extent for H 2 
16 O, levels from Mikhailenko et al. 

[23, 26] and Liu et al. [24] were used. Unfortunately, the IU- 

PAC and Mikhailenko et al. quantum assignments often differ 

and complete matching would require a substantial amount of 

time in the future. An update of the IUPAC energy levels is in 

progress which will endeavor to resolve these assignment is- 

sues. 

Many of the updated water vapor lines use line positions gener- 

ated from the IUPAC energy levels and theoretical transition inten- 

sities, based on a high-accuracy ab initio dipole moment surface 

[16] . The methodology developed by Lodi and Tennyson [17] in- 

volves using several calculated line lists to identify reliable theo- 

retical predictions. Lodi and Tennyson’s intensity data were used 

in their entirety for H 2 
17 O and H 2 

18 O in HITRAN2012. Subsequent 

measurements and analysis by Regalia et al. [27,28] gave good 
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Table 3 

Molecules and isotopologues represented in line-by-line portion of HITRAN. 

Molecule Isotopologue a HITRAN2012 

Spectral Coverage 

(cm 

–1 ) 

HITRAN2016 

Spectral Coverage 

(cm 

–1 ) 

HITRAN2012 

Number of 

Transitions 

HITRAN2016 

Number of 

Transitions 

Non-Voigt line 

shape for at 

least some 

transitions? 

Broadening by 

H 2 , He and CO 2 

(1) H 2 O 161 0 – 25,711 0 – 25,711 142 045 140 751 d Yes 

181 b 0 – 19,918 0 – 19,918 39 903 39 901 

171 b 0 – 19,946 0 – 19,946 27 544 27 544 

162 0 – 22,708 0 – 22,708 13 237 56 430 

182 0 – 3825 0 – 10,729 1611 10 664 

172 1234 – 1599 0 – 10,703 175 6313 

262 c 0 – 12,812 c 32 184 

(2) CO 2 626 345 – 12,785 158 – 14,076 169 292 173 024 

636 406 – 12,463 332 – 13,735 70 611 70 577 

628 0 – 9558 1 – 12,678 116 482 127 850 

627 0 – 9600 0 – 12,727 72 525 77 941 

638 489 – 6745 2 – 9213 26 737 43 782 

637 583 – 6769 9 – 8062 2953 25 175 

828 491 – 8161 482 – 8163 7118 10 522 

827 626 – 5047 491 – 8194 821 15 878 

727 535 – 6933 535 – 6933 5187 6518 

838 4599 – 4888 2245 – 4751 121 2916 

837 c 549 – 4915 c 4190 

737 c 575 – 3615 c 1501 

(3) O 3 666 0 – 6997 0 – 6997 261 886 289 340 

668 0 – 2768 0 – 2768 44 302 44 302 

686 1 – 2740 1 – 2740 18 887 18 887 

667 0 – 2122 0 – 2122 65 106 65 106 

676 0 – 2101 0 – 2101 31 935 31 935 

(4) N 2 O 446 b 0 – 7797 0 – 7797 33 074 33 074 Yes 

456 5 – 5086 5 – 5086 4222 4222 

546 4 – 4704 4 – 4704 4592 4592 

448 542 – 4672 0 – 4672 10 364 116 694 

447 550 – 4430 550 – 4430 1705 1705 

(5) CO 26 3 – 8465 3 – 14,478 1019 1344 Yes Yes 

36 3 – 6279 3 – 12,231 797 1042 Yes Yes 

28 3 – 6267 3 – 12,205 770 920 Yes Yes 

27 3 – 6339 3 – 10,295 728 800 Yes 

38 3 – 6124 3 – 8078 712 674 Yes 

37 1807 – 6197 3 – 8168 580 601 Yes 

(6) CH 4 211 0 – 11,502 0 – 11,502 336 829 313 943 

311 0 – 11,319 0 – 11,319 72 420 77 626 

212 15 – 6511 7 – 6511 54 550 54 550 

312 959 – 1695 959 – 1695 4213 4213 

(7) O 2 66 0 – 15,928 0 – 57,028 1787 15 263 Yes 

68 1 – 15,853 1 – 56,670 875 2965 Yes 

67 b 0 – 14,538 0 – 14,537 11 313 11 313 Yes 

(8) NO 46 0 – 9274 0 – 9274 103 701 103 701 d 

56 1609 – 2061 1609 – 2061 699 699 

48 1602 – 2039 1602 – 2039 679 679 

(9) SO 2 626 b 0 – 4093 0 – 4093 72 460 72 460 Yes 

646 b 0 – 2501 0 – 2501 22 661 22 661 Yes 

(10) NO 2 646 0 – 3075 0 – 3075 104 223 104 223 

(11) NH 3 446 0 – 70 0 0 0 – 10,349 45 302 65 828 Yes 

456 0 – 5180 0 – 5180 1090 1320 Yes 

(12) HNO 3 146 0 – 1770 0 – 1770 903 854 950 864 

156 0 – 923 0 – 923 58 108 58 108 

(13) OH 61 0 – 19,268 0 – 19,268 30 772 30 772 

81 0 – 329 0 – 329 295 295 

62 0 – 332 0 – 332 912 912 

(14) HF 19 24 – 46,985 24 – 32,352 10 073 8090 Yes Yes 

29 13 – 47,365 13 – 20,830 24 303 11 920 Yes 

(15) HCl 15 8 – 34,250 8 – 20,321 11 879 8892 Yes Yes 

17 8 – 34,240 8 – 20,219 11 907 8908 Yes Yes 

25 5 – 33,284 5 – 15,266 29 994 17 762 Yes 

27 5 – 33,258 5 – 15,247 29 911 17 690 Yes 

(16) HBr 19 13 – 16,034 13 – 16,034 3039 3039 

11 13 – 16,032 13 – 16,032 3031 3031 

29 7 – 8781 7 – 8781 1455 1455 

21 7 – 8778 7 – 8778 1455 1455 

(17) HI 17 10 – 13,908 10 – 13,908 3161 3161 

27 5 – 7625 5 – 7625 1590 1590 

(18) ClO 56 0 – 1208 0 – 1208 5721 5721 

76 0 – 1200 0 – 1200 5780 5780 

(19) OCS 622 0 – 4200 0 – 7822 15 618 18 264 Yes 

( continued on next page ) 
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Table 3 ( continued ) 

Molecule Isotopologue a HITRAN2012 

Spectral Coverage 

(cm 

–1 ) 

HITRAN2016 

Spectral Coverage 

(cm 

–1 ) 

HITRAN2012 

Number of 

Transitions 

HITRAN2016 

Number of 

Transitions 

Non-Voigt line 

shape for at 

least some 

transitions? 

Broadening by 

H 2 , He and CO 2 

624 0 – 4166 0 – 7796 6087 6846 Yes 

632 0 – 4056 0 – 6660 3129 3275 Yes 

623 0 – 4164 0 – 6631 2886 3005 Yes 

822 0 – 4046 0 – 4046 1641 1640 Yes 

(20) H 2 CO 126 0 – 3100 0 – 3100 40 670 40 670 

136 0 – 117 0 – 117 2309 2309 

128 0 – 101 0 – 101 1622 1622 

(21) HOCl 165 b 1 – 3800 1 – 3800 8877 8877 

176 b 1 – 3800 1 – 3800 7399 7399 

(22) N 2 44 11 – 9355 11 – 9355 1107 1107 

45 b 11 – 2578 11 – 2578 161 161 

(23) HCN 124 0 – 3424 0 – 17,586 2955 58 108 

134 2 – 3405 2 – 3405 652 652 

125 2 – 3420 2 – 3420 646 646 

(24) CH 3 Cl 215 0 – 3198 0 – 3198 107 642 110 462 

217 0 – 3198 0 – 3198 104 854 109 113 

(25) H 2 O 2 1661 b 0 – 1731 0 – 1731 126 983 126 983 

(26) C 2 H 2 1221 604 – 9890 13 – 9890 12 613 22 866 Yes 

1231 613 – 6589 613 – 6589 285 285 Yes 

1222 1 – 789 1 – 789 7512 7512 Yes 

(27) C 2 H 6 1221 706 – 3001 225 – 3001 43 592 54 460 

1231 725 – 919 285 – 919 6037 7107 

(28) PH 3 1111 0 – 3602 0 – 3602 22 190 22 190 

(29) COF 2 269 696 – 2002 725 – 2002 168 793 168 793 

369 686 – 815 686 – 815 15 311 15 311 

(30) SF 6 29 580 – 996 580 – 996 2 889 065 2 889 065 

(31) H 2 S 121 b 2 – 11,330 2 – 11,330 36 561 36 561 

141 b 5 – 11,227 5 – 11,227 11 352 11 352 

131 b 5 – 11,072 5 – 11,072 6322 6322 

(32) 

HCOOH 

126 10 – 1890 10 – 1890 62 684 62 684 

(33) HO 2 166 b 0 – 3676 0 – 3676 38 804 38 804 

(34) O 6 b 68 – 159 68 – 159 2 2 

(35) 

ClONO 2 

5646 763 – 798 763 – 798 21 988 21 988 

7646 765 – 791 765 – 791 10 211 10 211 

(36) NO 

+ 46 1634 – 2531 3 – 2531 1206 1270 

(37) HOBr 169 0 – 316 0 – 316 2177 2177 

161 0 – 316 0 – 316 2181 2181 

(38) C 2 H 4 221 701 – 3243 620 – 3243 18 097 59 536 

231 2947 – 3181 614 – 3181 281 18 095 

(39) CH 3 OH 2161 b 0 – 1408 0 – 1408 19 897 19 897 

(40) CH 3 Br 219 794 – 1706 794 – 1706 18 692 18 692 

211 796 – 1697 796 – 1697 18 219 18 219 

(41) CH 3 CN 2124 890 – 946 890 – 946 d 3572 3572 d 

(42) CF 4 29 594 – 1313 582 – 1519 60 033 842 709 

(43) C 4 H 2 2211 0 – 758 0 – 1303 124 126 251 245 

(44) HC 3 N 1224 0 – 760 0 – 760 180 332 180 332 

(45) H 2 11 15 – 36,024 15 – 27,185 4017 3480 Yes 

12 b 3 – 36,406 3 – 36,406 5129 5129 Yes 

(46) CS 22 1 – 2586 1 – 2586 1088 1088 

24 1 – 1359 1 – 1359 396 396 

32 1 – 1331 1 – 1331 396 396 

23 1 – 156 1 – 156 198 198 

(47) SO 3 26 0 – 2825 0 – 2825 10 881 14 295 

(48) C 2 N 2 4224 c 200 – 307 c 71 775 

(49) COCl 2 2655 c 793 – 900 c 164 436 

2657 c 800 – 892 c 145 477 

a Abbreviated code for isotopologues. 
b Although spectral ranges and amount of lines is unchanged with respect to HITRAN2012, there are changes to spectral parameters of lines for these isotopologues. 
c Not included in HITRAN2012. 
d These numbers will change eventually once changes discussed in sections 2.8 and 2.41 will be finalized. 

agreement with these intensities. The present update relies heavily 

on Lodi-Tennyson style calculations for all isotopologues, supple- 

mented with high-quality experimental data where available. This 

approach has proven to work well in application to atmospheric 

and laboratory spectra (see for instance Campargue et al. [29] and 

Ponomarev et al. [30] ). 

Given the reliance on these theoretical intensities, it is impor- 

tant to understand the systematic errors which ab initio calcu- 

lations may show. In the same issue of this journal, Birk et al. 

[31] give an extensive intercomparison of ab initio calculations 

with high-quality experimental data. The experimental intensities 

used in the intercomparison are all included in the HITRAN2016 

update. Much of the data show agreement between ab initio and 

experiment within 2%. However, for some bands, notably those in- 

volving excitation of the stretching modes, there are larger offsets 

of up to 8% which can be attributed to systematic errors in the ab 
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Fig. 1. Percentage ab initio -experimental vs. intensity for bands in the 1850–2280 cm 

−1 and 2390–40 0 0 cm 

−1 regions of H 2 
16 O. The error limit of the experimental data is 

1% [31] . 

initio dipole moment calculations. Furthermore, in the ν1 funda- 

mental, differences show a systematic dependence on wavenum- 

ber, �K a and �J . Other vibrational bands involving the changes in 

ν1 quanta also showed larger systematic errors. The theoretical cal- 

culations also have problems in predicting local resonances accu- 

rately, although these resonances start to appear more frequently 

in the NIR part of the spectrum. The information on systematic dif- 

ferences between the ab initio theory and experiment for H 2 
16 O 

can be used to estimate uncertainties for minor isotopologues for 

which no high-accuracy experimental intensities are available. 

An important finding of this work is that for an individual vi- 

brational band an intensity-independent offset appears in graphi- 

cal representations of differences between experiment and theory 

vs. intensity. This information can be used to validate experiment 

as well as theory. The constant offset can also be used to predict 

weak line intensities where experimental data are unavailable by 

scaling ab initio values. 

Fig. 1 compares theory and experiment for the 1850–2280 cm 

−1 

and 2390–40 0 0 cm 

−1 regions. The agreements for the fundamental 

bands (0 01)-(0 0 0), (010)-(0 0 0), the overtone (020)-(0 0 0), the hot 

bands (030)-(010), (020)-(010), (011)-(010), (001–010), (100)-(010) 

are all excellent, mainly within 2%. The bands involving changes in 

the ν1 quanta, (10 0)-(0 0 0) and (110)-(010), however, show large 

scatter and an offset around −2%. The scatter includes the sys- 

tematic differences of + 5% to −13%, which becomes obvious when 

plotting the differences against wavenumber or lower-state energy 

and color coding �K a and/or �J [31] . 

The 2016 update provides comprehensive line lists for the six 

main isotopologues of water: H 2 
16 O, H 2 

18 O, H 2 
17 O, HD 

16 O, HD 

18 O 

and HD 

17 O, as well as the newly-added isotopologue D 2 
16 O. The 

use of variational calculations to provide the underlying line lists 

guarantees the completeness of the lists for the intensity cutoff

employed. This completeness leads to a significant expansion of 

the number of important transitions of the deuterated isotopo- 

logues into the NIR (near-infrared) region. These line lists are pre- 

sented and analyzed in articles published in this issue [25] . Fig. 2 

shows an example where atmospheric retrieval from a Total Car- 

bon Column Observing Network (TCCON) [32] spectrum benefits 

from inclusion of HDO lines in the NIR. It is also important to note 

a significant increase in coverage for HD 

17 O and HD 

18 O which were 

poorly represented in previous HITRAN releases. 

The variational (calculated) intensities described above were 

then replaced with intensities from available high-quality experi- 

ments, many of which were already in the HITRAN2012 database. 

The details will be given in a dedicated paper, but some of the ex- 

periments that represent a substantial bulk of new experimental 

intensity data are described below. 

2.1.1.1. DLR experiments. An extensive work in the spectral ranges 

1850–2280 cm 

−1 and 2390–40 0 0 cm 

−1 was carried out by Loos 

et al. [33,34] and in the range 4190–4340 cm 

−1 by Birk et al. 

[31] . In Fig. 3 we will refer to these, and the experiments from 

the same authors that are already in HITRAN, as DLR. In Loos 

et al. [33,34] line positions, intensities, self- and air-broadened 

line-shape parameters, their temperature dependence as well as 

Rosenkranz line coupling coefficients were retrieved from numer- 

ous Fourier-Transform transmittance measurements of self- and 

air-broadened water vapor at 296 K as well as air-broadened wa- 

ter vapor measurements at low and high temperatures. During 

the analysis, a large effort was undertaken to give consolidated 

error bars. In the analysis, a multispectrum fitting approach ap- 

plying a quadratic speed-dependent hard collision model based 

on the Hartmann-Tran profile [7,8] and extended to account for 

line mixing in the Rosenkranz first order perturbation approxima- 

tion [35] was used. Line positions, intensities and self-broadening, 

self-speed-dependence and self-shift parameters, as well as in 

some cases self-line coupling coefficients, were retrieved from pure 

water-vapor measurements of total pressures up to 20 mbar. Air- 

broadening, speed-dependence, pressure shift parameters, Dicke 

narrowing and line-mixing coefficients as well as temperature- 

dependence parameters were obtained from air-broadened mea- 

surements at ambient temperature and total pressures from 30 to 

10 0 0 mbar as well as low and high-temperature measurements 

at 100 mbar total pressure. The intensities of lines with retrieved 

line parameters range from 3 × 10 −26 to 3 × 10 −19 cm 

-1 /(molecule 

cm 

-2 ). In the 4190–4340 cm 

−1 region, several Fourier-Transform 

transmittance spectra of pure and air-broadened water vapor at 

296 K as well as low and high temperatures were measured and 

analyzed by Birk et al. [31] . These measurements were dedicated 

to water vapor parameters to be used in TROPOMI/S5-P [36] re- 

trievals. The analysis was also based on a multispectrum fit using 

the HT profile. Line positions, intensities, self- and air-broadened 

line-shape parameters including speed-dependence and Dicke nar- 

rowing parameters as well as their temperature dependence were 

retrieved in the analysis. 
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Fig. 2. Spectral fits to the high-H 2 O Darwin (Australia) spectrum using the HITRAN2012 line list (left panel) and the new line list (right panel). The improvement in the 

residuals is due to the addition of HDO lines (three in this plot) denoted by the orange trace. Note the slight change of scale in the residuals on the left and right sides. 

Fig. 3. Flow diagram for the construction of line positions and intensities for H 2 
16 O below 8340 cm 

−1 . See text for details. 
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Fig. 4. Flow diagram for the construction of line positions and intensities for H 2 
18 O and H 2 

17 O. The asterisks indicate that the IUPAC levels were slightly updated in this 

work. LED refers to the experimental data from Ref. [26] . See text for details. 

2.1.1.2. MiKaMo16 experimental set. Recently, Mikhailenko et al. 

[23] have compiled a database of measurements in 5850–

8340 cm 

−1 region from the Grenoble-Tomsk collaboration reported 

in Refs. [37–41] supplemented with measurements from Siron- 

neau and Hodges [42] and for strong lines from Toth [43] and for 

very weak lines from ab initio work of Partridge and Schwenke 

[44,45] . This database is here referred to as MiKaMo16. Unfortu- 

nately, due to some differences in assignments with the variational 

Lodi-Tennyson-like line lists described above, it was hard to take 

full advantage of this line list. However, tests against TCCON spec- 

tra have shown that this line list is superior to any other line list 

in the region of 70 0 0–8340 cm 

−1 . It was therefore used in HI- 

TRAN2016 in that region as is almost everywhere in this spectral 

region. This, however, creates some consistency issues with assign- 

ments of energy levels throughout the database, but substantial 

improvement of atmospheric retrievals justifies this approach. 

As examples of the complexity of the update, Figs. 3 and 4 

show the flow diagrams of the construction of position-intensity 

line lists of the principal isotopologue (only up to 8340 cm 

−1 for 

simplicity) and for H 2 
18 O/H 2 

17 O respectively. Note that the line list 

from Lodi et al. [16] for the principal isotopologue is limited to 

10 −28 cm 

−1 /(molecule cm 

−2 ); therefore intensities for weaker lines 

still originate from HITRAN2012/BT2. 

Whenever a rotational quantum number could not be deter- 

mined unambiguously, the index of symmetry (1, 2, 3, and 4 as 

defined in the BT2 work [15] ) accompanied with a negative sign 

was used. Note that 1 and 2 indicate para states, whereas 3 and 4 

indicate ortho states. For the case of unassigned vibrational quanta, 

a “-2” label has been adopted. 
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2.1.2. Line-shape parameters for the H 2 
16 O, H 2 

18 O and H 2 
17 O line 

lists 

The air-broadened half widths (in Voigt profile formalism) for 

the first three isotopologues of water in HITRAN2008 and, with 

some modifications, in HITRAN2012 were derived using the proce- 

dure “Diet” described by Gordon et al. [46] . This procedure contin- 

ues to be used in this edition with experimental outliers identified 

and removed. One notable example is the removal of a large por- 

tion of the half widths measured in Jenouvrier et al. [47] from the 

experimental data that feeds the “Diet”. Indeed, some of the recent 

evaluations of atmospheric spectra showed that many data in Jen- 

ovrier et al. are questionable (see for instance Armante et al. [48] ). 

However, although the removal of this extensive dataset from the 

updated Gordon et al. [46] procedure, as was done in the GEISA 

database [49] and the MiKaMo16 linelist, have improved the resid- 

uals in some of the lines, some of the residuals became worse than 

in HITRAN2012. The main problem here is due to the fact that, 

while there are definite outliers in the values reported in Jenou- 

vrier et al. [47] , it is the most extensive study of the air-broadened 

line widths in the 420 0–660 0 cm 

−1 region. In fact, for many tran- 

sitions no other measurements exist. Removal of these measure- 

ments from the experimental dataset has invoked the use of the 

approximations of different levels (some are very crude) from the 

work of Jacquemart et al. [50] for many of the transitions. The only 

solution in this case was to filter the Jenouvrier et al. dataset. This 

was done through direct comparisons with the TCCON spectra for 

some of the transitions and cross-comparison with similar rota- 

tional transitions but from other bands, accounting for vibrational 

dependence from Eq. (1) of Jacquemart et al. [50] . After this fil- 

tering procedure, about 1400 measurements (out of almost 50 0 0) 

from Jenouvrier et al. [47] were retained. 

It is also important to emphasize that measurements by Birk 

and Wagner [51] in the ν2 band region were given a priority 

and were written into the database directly as was done in HI- 

TRAN2012. 

Since the modeling of water vapor absorption lines using a 

Voigt model is no longer sufficient in many applications and the 

HT profile provides considerably higher accuracy, experimental HT 

profile parameters of Birk et al. and Loos et al. [31,33,34] in 

the spectral ranges 1850–2280 cm 

−1 , 2390–40 0 0 cm 

−1 and 4190–

4340 cm 

−1 were accommodated wherever possible. The experi- 

ments and analysis procedures applied are described briefly in 

Section 2.1.1 . 

2.1.3. Line-shape parameters for the deuterated isotopologues 

The addition of the line-shape parameters for D 2 O follows a 

similar procedure as the other isotopologues; however, the avail- 

able data for air-broadening of D 2 O are considerably less complete 

than for the other isotopologues. There are some measurements for 

air-broadening of D 2 O [52–55] as well as Complex Robert-Bonamy 

calculations [56] . These data amount to several hundred lines from 

the measured data and just over 550 lines from the theoretical cal- 

culations. Using these data, average values as a function of J ′′ were 

determined and extrapolation to J ′′ = 50 was done using a third- 

order polynomial fit. 

Using these data, the half widths and some line shifts have 

been added to the D 2 O lines in the database using a priority 

scheme. First, the measured values were added; if the measure- 

ment did not exist for the transition in question, the theoretical 

value was used. If neither exists, the J -averaged value was used. 

This algorithm allowed half widths to be added to all D 2 O lines in 

the HITRAN database. 

For self-broadening parameters of D 2 O, the work of Gamache et 

al. [57] was used. These data are an extensive set of calculations for 

D 2 O rotational band transitions extended to 6536 lines using the 

partner transition rule [58] . Using these data, a set of J -averaged 

half widths was determined for J = 0–50 [57] . These data have been 

added to the algorithm that adds line-shape data to the water lines 

in the HITRAN database. 

2.1.4. Future plans 

Recently, Lampel et al. [59] have identified important ab- 

sorption features in atmospheric spectra due to water vibration- 

rotation transitions in the near ultraviolet around 363 nm. Labo- 

ratory measurements of water vibration-rotation transition inten- 

sities only extend to 25,470 cm 

−1 (393 nm) [60] although multi- 

photon spectra do provide some information on energy levels in 

the region of question [61,62] . Future updates will look to extend 

coverage to water absorption in the near ultraviolet; these data 

are important for upcoming satellite missions, including TEMPO 

[63] which will record spectra at these wavelengths. 

At the intensity limit assumed for D 2 
16 O, the even rarer iso- 

topologues D 2 
17 O and D 2 

18 O should also be visible. Line lists for 

these two species have also been prepared as part of the work 

on deuterated water in Ref. [25] ; these data will be added in the 

forthcoming updates to HITRAN2016. 

We will be populating the database of the HT line-shape pa- 

rameters after evaluating existing literature values and new mea- 

surements as they become available. 

2.2. CO 2 (molecule 2) 

Accurate and comprehensive line lists for all naturally abundant 

isotopologues of carbon dioxide are required by remote-sensing 

missions dedicated to monitor the concentration of carbon dioxide 

in Earth’s atmosphere. The recently launched OCO-2 mission [64–

66] , together with several other space and ground based projects 

(GOSAT [67] , AIRS [68] , ASCENDS [69] , TCCON [32] , NDACC [70] ) 

are dedicated to explicitly monitor the atmospheric CO 2 content. 

These experiments aim not only to look at overall CO 2 concentra- 

tion and its variation, but also wish to pinpoint where CO 2 is being 

produced (sources) and where it is absorbed (sinks). This activity is 

clearly vital to monitoring and essential for eventually controlling 

the CO 2 content of the atmosphere [71] . A successful retrieval of 

CO 2 concentration requires validated line lists with transition in- 

tensities given at sub-percent accuracy, line positions accurate to 

0.0 0 01 cm 

−1 or better, and beyond-Voigt-profile line-shape mod- 

els [65,72,73] . 

Determination of isotopic ratios of carbon in Earth’s samples 

and astrophysical objects remains crucial for modeling geophysi- 

cal processes. For example, quantification of 14 C in fossil fuels can 

provide information about the sources of human-related contribu- 

tion to the total CO 2 concentration in the terrestrial atmosphere. 

This can be done with recently developed cavity-enhanced laser 

spectroscopic techniques in the IR [74–76] . However, these mea- 

surements require a priori simultaneous knowledge of reliable line 

intensities of many isotopologues. Precise determination of 13 C/ 12 C 

and 

16 O/ 17 O/ 18 O ratios is also vital, for instance, in understand- 

ing processes of formation of radiation fields in the Martian at- 

mosphere, which is 96% rich in carbon dioxide [77] . 

A summary of the carbon dioxide line list in the HITRAN2012 

database and comparison to HITRAN2016 is given in Table 4 . The 

HITRAN2012 database was considerably improved with respect to 

its previous 2008 edition. However, several issues related to spec- 

tral completeness, inconsistency of multiple data sources, and in- 

sufficient accuracy of line intensities, still remained unsolved. The 

majority of entries in the 2012 version of the HITRAN database 

were taken from the effective Hamiltonian calculations included in 

the 2008 edition of the CDSD-296 database [78] . 

For less abundant isotopologues, obtaining high-quality experi- 

mental data is not trivial. Therefore fits of the effective Hamilto- 

nian or the effective dipole moment [78] , were based on only four 
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Table 4 

Comparison of HITRAN2016 and HITRAN2012 line lists for isotopologues of carbon dioxide. 

ISO/abundance HITRAN2012 HITRAN2016 

Number of lines Spectral region (cm 

−1 ) Q(296 K) Number of lines Spectral region (cm 

−1 ) Q(296 K) 

626/0.984204 169,292 345.936–12,784.056 286.94 173,024 158.301–14,075.298 286.094 

636/1.1057 × 10 −2 70,611 406.834–12,462.046 578.41 70,577 332.649–13,734.963 576.644 

628/3.9470 × 10 −3 116,482 0.736–9557.398 609.48 127,850 1.472–12,677.181 607.713 

627/7.3399 × 10 −4 72,525 0.757–9599.317 3552.70 77,941 0.757–12,726.562 3542.610 

638/4.4345 × 10 −5 26,737 489.678–6744.158 1229.10 43,782 2.945–9212.609 1225.270 

637/8.2462 × 10 −6 2953 583.593–6768.643 7162.90 25,175 9.086–8061.741 7140.024 

828/3.9556 × 10 −6 7118 4 91.6 88–8160.439 324.21 10,522 482.813–8162.743 323.424 

728/1.4718 × 10 −6 821 626.438–5046.875 3776.40 15,878 491.181–8193.172 3766.044 

727/1.3685 × 10 −7 5187 535.384–6932.980 11,0 02.0 0 6518 535.383–6932.693 10,971.91 

838/4.4 4 40 × 10 −8 121 4599.239–4887.290 653.50 2916 2245.898–4750.068 652.242 

837/1.653 × 10 −8 N/A N/A 7615.20 4190 54 9.472–4 914.4 96 7593.900 

737/1.5375 × 10 −9 N/A N/A N/A 1501 575.852–3614.084 22,129.96 

646/radioactive N/A N/A N/A 41,610 426.445–7928.788 2033.353 

Note : ISO is the AFGL shorthand notation for the isotopologue, abundance is the terrestrial value assumed by HITRAN, and Q(296) is the 

partition sum at 296 K. 

Fig. 5. Overview of the line lists of stable symmetric isotopologues of carbon dioxide in HITRAN2012 and HITRAN2016. 

major isotopologues 12 C 

16 O 2 , 
13 C 

16 O 2 , 
16 O 

12 C 

18 O and 

16 O 

12 C 

17 O, for 

which measured spectroscopic parameters were available. As a re- 

sult, several spectral gaps were present in HITRAN2012 (see for in- 

stance discussion in Refs. [79,80] ) which represent regions where 

experimental data were unavailable. For similar reasons, no entries 

were included in the database for the 18 O 

13 C 

17 O, 17 O 

13 C 

17 O, and 

16 O 

14 C 

16 O isotopologues (837, 737, and 646 in old AFGL notation). 

An overview of this problem is displayed in Figs. 5 and 6 , where 

CO 2 ro-vibrational spectra from HITRAN2012 and HITRAN2016 are 

compared for different isotopologues. 

Wherever possible, the effective Hamiltonian fits were extrapo- 

lated to the trace isotopologues, using a method of isotopic sub- 

stitution [81] . In the 2012 edition, multiple data sources caused 

sporadic discontinuities in intensity patterns of ro-vibrational lines 

[82–84] . Furthermore, a high percentage of line intensities in HI- 

TRAN2012 have stated uncertainty of 20% or worse (HITRAN un- 

certainty index equal to 3). Although this assessment has been 

proven to be overly pessimistic in many cases [82,83,85–87] , the 

uncertainty budget, especially for the Effective Hamiltonian cal- 

culations, was still too high for precise measurements of at- 

mospheric CO 2 concentration. The most accurate entries in HI- 

TRAN2012 were taken from NASA JPL measurements by Toth et 

al. [88–90] and covered the 1.6-μm and 2.06-μm spectral regions, 

which are used in remote-sensing measurements. The stated 1–

5% accuracy of these experimental line intensities (HITRAN uncer- 

tainty index equal to 7 and 6), has been confirmed by a number of 

comparisons [82,83,91] ; nonetheless the rigorous requirements for 

part-per-million resolution in measurements of CO 2 atmospheric 

concentration were not achieved. 

Since the 2012 release of the HITRAN database, a large num- 

ber of experimental and theoretical studies have been devoted 

to improve the knowledge of line positions, line intensities and 

line shapes of CO 2 isotopologues. For a comprehensive review of 

Please cite this article as: I.E. Gordon et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy & 

Radiative Transfer (2017), http://dx.doi.org/10.1016/j.jqsrt.2017.06.038 

1E· 17 1E·19 

'5' 
626 636 

1E·19 
HITRAN16 1E-21 HITRAN16 -E e 

1E-21 0 HITRAN12 0 HITRAN12 E 1E·23 

~ .. 
0 1E-23 -s:: 
"iii 1E-25 
C 

l E--25 
(I) 1E-27 
~ 1E--27 

j 11 (I) 
1E·29 1E-29 j C G :.:; 
1E-31 1E-31 

5000 10000 15000 5000 10000 15000 

'5' 
1E-25 727 

I 
737 

l 
• HITRAN16 

1E-27 • HITRAN16 E 
E 

I 
G HITRAN1 2 

1 
0 HITRAN12 

~ 1E-27 

II ~ 
'iii 

6 1E-29 C 
(I) 

1E·29 • :s C (I) ~ C 
:.J 

IE-31 1E-31 
0 2000 4000 6000 8000 0 1000 2000 3000 4000 

lE-23 828 1E-25 838 
0 e HITRAN16 0 HITRAN16 E 

l. § 1E-25 e HITRAN12 e HITRAN12 
1E·27 

I ~ 1E·27 'iii 
C 

lt ' 
,i 1E-29 
.!: 1E-29 I J (I) e 
C 
:.:; 

1E·31 1E·31 
2000 4000 6000 8000 0 2000 4000 6000 800'.l 

wavenumber(cm·') wavenumber(cm·') 

http://dx.doi.org/10.1016/j.jqsrt.2017.06.038


12 I.E. Gordon et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 0 0 0 (2017) 1–66 

ARTICLE IN PRESS 

JID: JQSRT [m5G; August 21, 2017;14:18 ] 

Fig. 6. Overview of the line lists of stable asymmetric isotopologues of carbon dioxide in HITRAN2012 and HITRAN2016. 

measurements and theoretical models see Ref [92] . and references 

therein. 

Theoretical line lists (denoted as "Ames") for 12 stable and one 

radioactive (646) isotopologue of CO 2 were published by Huang 

et al. in the 0–20,0 0 0 cm 

−1 spectral region and for temperatures 

below 1500 K [79,93,94] . Room-temperature line lists (denoted as 

"UCL-IAO") for 13 CO 2 isotopologues were also calculated by Zak 

et al. [82,83,85,91] in the 0–80 0 0 cm 

−1 spectral region. Both of 

these latter studies contained intensities computed with ab initio 

dipole moment surfaces and semi-empirical line positions, based 

on a fitted potential energy surface for the Ames effort and on the 

effective Hamiltonian calculations for UCL-IAO. A major advantage 

of the variational approach used in the Ames and UCL-IAO line 

lists is that it should give similar accuracy for all isotopologues. 

This allows coverage of spectral regions currently not probed by 

experiments for rare isotopologues. UCL-IAO also provides uncer- 

tainty estimates of line intensities, based on a purely theoretical 

methodology [17] . Such a reliable analysis allows for the detection 

of ro-vibrational resonance interactions, which significantly lower 

the accuracy of theoretical line positions and intensities. Using this 

method, the lines identified as unreliable have been replaced with 

the data from CDSD-296 [92] and, in several cases of interpolyad 

resonance interactions (asymmetric isotopologues), with the exper- 

imental data from Lyulin et al. [95] , Karlovets et al. [96,97] and 

Campargue et al. [98] . 

Recently, there have been a number of high-precision near-IR 

spectroscopic measurements which provide rigorous tests of the- 

oretical line intensities based on effective dipole moment surface 

and ab initio calculations [84–87,99] . Particularly, in the 1.6-μm 

and 2.0-μm spectral regions, the UCL-IAO line lists have been ex- 

perimentally verified as accurate to the sub-percent level. Fig. 7 

compares the UCL-IAO and Ames line lists to HITRAN2012 (Toth et 

al. blue open circles [100, 101] ) for the 20012 −00001 band and 

to state-of-the-art experiments including advanced high-resolution 

laser measurements [101–104] . A number of comparisons here 

suggest that the UCL-IAO study models line intensities more ac- 

Fig. 7. Comparison of line intensities between HITRAN2016, HITRAN2012 (Toth et 

al. [88] ), and other accurate experimental and theoretical sources for the 20012 - 

0 0 0 01 band (2-μm band) of 12 C 16 O 2 : measurements Wübbeler et al. [102] , NIST 

[104] and UniNA2 [103] , and theory Ames-1 [79] . The zero relative deviation line 

corresponds to HITRAN2016 line intensities (in this case from Zak et al. [82] ). The 

running index m equals - J, J , and J + 1 for the P, Q, and R branches, respectively. 

curately than the Ames study. Note that more recent results from 

Ames, which are available from their website ( www.huang.seti. 

org ), give closer agreement with UCL-IAO. From Fig. 7 it is clear 

that there is a 1–3% average difference in line intensities between 

the new and the previous version of HITRAN for this band. The 

independent experiments from the National Institute of Standards 

and Technology [104] , and the University of Naples II [103] con- 

firm, however, a conservative 0.5% accuracy of line intensities for 

this band in HITRAN2016. This level of accuracy could potentially 

satisfy even the most stringent requirements of current remote- 

sensing missions. Interestingly, although line intensities for this 

band and the 20013 − 00001 and 30013 – 00001 bands probed 

by OCO-2 originate from the same source (Toth et al. [100] ), the 

agreement between UCL-IAO and HITRAN2012 is substantially bet- 

ter for the OCO-2 bands. 

For wavenumbers greater than 80 0 0 cm 

−1 , the majority of the 

line parameters were taken from CDSD-296 [92] . As we have al- 

ready mentioned above, both HITRAN2012 and CDSD-296 have 

several spectral gaps, in particular in the wavenumber region 
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greater than 80 0 0 cm 

−1 . Recently, several experimental studies of 

the carbon dioxide spectra in the high-frequency region have been 

performed [105–108] . The measured line intensities allowed deter- 

mining the absent effective dipole moment parameters for several 

series of transitions. Using these effective dipole moment parame- 

ters and an effective Hamiltonian from Ref. [109] , the line positions 

and intensities for the principal isotopologue were generated and 

included into HITRAN2016 covering the 980 0–10,50 0 cm 

−1 and 

11,60 0–12,40 0 cm 

−1 wavenumber gaps. 

Line positions were updated with respect to the previous ver- 

sion of the database. The majority of lines come from the effective 

Hamiltonian calculations included in UCL-IAO line lists, which are 

based on the fits to the observed line positions collected from the 

literature and published in the latest, 2015 release of the CDSD- 

296 database [92] . These fits were completed and updated with 

recent, accurate measurements performed on isotopically-enriched 

samples of CO 2 . Uncertainties in the fitted line positions depend 

on the quality of the experimental data and vary from 0.001 cm 

−1 

to 10 −9 cm 

−1 . For asymmetric isotopologues, a number of bands 

are affected by strong interpolyad anharmonic resonance inter- 

actions. The effective Hamiltonian model does not include this 

type of interaction for the asymmetric isotopologues. Hence in 

such cases, line positions were taken directly from measurements 

[80,95–98,110,111] . 

The uncertainty codes for the line positions were trans- 

ferred from CDSD-296 to HITRAN2016. The uncertainty code 3 

(0.001–0.01 cm 

−1 ) was given for the line positions in the 9800–

10,500 cm 

−1 and 11,600–12,400 cm 

−1 wavenumber regions. Parti- 

tion functions in the current release of the database are based on 

the direct summations taken from the variational calculations of 

Huang et al. [79] . On average, the new partition functions agree 

excellently with those of CDSD-296 [83] ; however they do not 

agree perfectly with those in HITRAN2012 (from TIPS [112] ) and 

three previous editions of the database and differ at 296 K by about 

−0.3%. Although this difference is marginal, it could have an effect 

in the applications where sub-percent accuracy is required. 

As stated above, the radioactive isotopologue 14 CO 2 , 646, has 

been added to the database. This is the first edition of HITRAN 

where radioactive species have been incorporated (also for CO, see 

Section 2.5 ). All lines of the 646 isotopologue were taken from 

the UCL line lists given in Ref. [83] . Due to issues with what 

constitutes a so-called natural terrestrial abundance of radioactive 

species (which is part of the traditional definition of intensities in 

HITRAN, see Eq. (1) of the Definitions and Units documentation in 

HITRAN online ), line intensities for these type of species are given 

for unit abundance; a 10 −27 cm 

−1 /(molecule ·cm 

−2 ) cut-off value 

for the intensity has been applied. This cut-off produced 41,610 

lines in the J range 0 to 114. Vibrational assignments for the 646 

isotopologue were based on isotopic shifts of energy levels and re- 

spective assignments for the 626 and 636 isotopologues, and hence 

should be regarded as provisional. An abundance-scaled intensity 

cut-off of 10 −30 cm 

−1 /(molecule ·cm 

−2 ) is used for all stable iso- 

topologues. Note that, for the time being, data for the radioactive 

isotopologues are provided as static files rather than through the 

HITRAN online interface. 

Uncertainties of line intensities were informed by theoret- 

ical error analysis, which classified lines as reliable, interme- 

diate, or unreliable. Bands with reliable lines stronger than 

10 −23 cm 

−1 /(molecule ·cm 

−2 ) (for unit abundance) were as- 

signed HITRAN uncertainty code 8 (i.e. accuracy of 1% or bet- 

ter). Line intensities of reliable parallel bands weaker than 

10 −23 cm 

−1 /(molecule ·cm 

−2 ) were given an uncertainty code 7 

(i.e. accuracy 1-2%). Reliable perpendicular bands weaker than 

10 −23 cm 

−1 /(molecule ·cm 

−2 ) and intermediate lines were marked 

with HITRAN uncertainty code 6 (i.e. accuracy 2-5%). So-called un- 

reliable lines were taken from the effective dipole moment cal- 

culations [92] and experiments. Typical intensity uncertainties for 

these entries range between 5 and 20%. 

It is important to point out that an intensive study of the 1.6- 

μm and 2.06-μm bands that includes non-Voigt lineshapes and line 

mixing has been published by the OCO-2 spectroscopy support 

group ABSCO (ABSorption COefficient tables for the OCO-2 mission) 

[84,86] . The data were fit using a multi spectrum fit procedure 

which, among other things, enables retrieval of the line-shape pa- 

rameters using the speed-dependent Voigt (SDV) profile as well as 

line mixing. These are very good experiments and it is debatable 

whether to use them for the strong and weak bands in place of 

UCL-IAO parameters described above. Indeed the ABSCO team have 

validated (using TCCON spectra) the cross-sections generated using 

results of Refs. [84,86] and found them to be the most efficient 

[113] . However, achieving high-precision results in nuanced corre- 

lations, with line mixing and model assumptions that can create 

discontinuities in inter-band comparisons, is difficult. At the mo- 

ment, HITRAN cannot provide users with tools that can be used to 

generate cross-sections from the works of Devi et al. [84] and Ben- 

ner et al. [86] . The usable products of the ABSCO effort are absorp- 

tion coefficients (available upon request from the ABSCO group) 

rather than spectral parameters, which are available in the pub- 

lications. Moreover, these absorption coefficients are empirically 

scaled by the factors of 0.6% and 1.4% for the 1.6-μm and 2.06-μm 

bands respectively, due to lingering data and/or model biases (the 

use of partition function HITRAN 2012/TIPS is up to 0.3% of this 

factor). After these studies, an update of the multi spectrum fitting 

code with CDSD partition functions was done. Additional methods 

to adjust the intensity distribution closer to the UCL list by scaling 

experimental conditions within the uncertainties are under eval- 

uation. The intensities of the band at 2.06 μm are already within 

0.7% of Zak et al. [82] , indicating that the additional 0.7% scaling 

of ABSCO cross-sections may be unrelated to intensities. These is- 

sues will be considered for future editions of the database. 

For wavenumbers greater than 80 0 0 cm 

−1 , two sources of the 

line intensities are used: CDSD-296 [92] and the newly-generated 

line list in the 980 0–10,50 0 cm 

−1 and 11,60 0–12,40 0 cm 

−1 regions 

based on the new measurements [105–108] . The uncertainty codes 

of the CDSD-296 line intensities were transferred to HITRAN2016. 

Based on the uncertainties of the line intensity measurements in 

the 10,700–10,860 cm 

−1 region [106] , we use uncertainty code 5 

(5% −10%) for the line intensities of the 30 03i-0 0 0 01 (i = 1,2,3,4) 

series of bands and based on the uncertainties of the line in- 

tensity measurements in the 10,0 0 0–10,30 0 cm 

−1 and 11,600–

12,400 cm 

−1 [107] wavenumber regions we use uncertainty code 

3 ( > 20%) for the line intensities of the 40 03i-0 0 0 01 (i = 1,2,3,4,5) 

and of the 60 01i-0 0 0 01 (i = 1,2,3,4,5,6,7) series of bands. 

The Voigt line-shape parameters throughout the entire database 

were calculated using the predictive routine of Gamache and Lam- 

ouroux explained in Refs. [114–116] . For the line mixing, we now 

provide a code from Lamouroux et al. [117] which has been up- 

dated to operate with HITRAN2016. We note that Lamouroux et al. 

[117] line mixing coupled with the HITRAN2012 data has worked 

really well and in fact produced residuals hardly exceeding 1% 

when applied to the TCCON data in Ref. [113] , although slightly 

inferior to the ABSCO cross-sections in the 2.06-μm region. 

2.3. O 3 (molecule 3) 

The spectroscopic database for ozone is important for atmo- 

spheric and environmental applications due to its critical roles in 

UV shielding, radiative transfer and health. It is also considered a 

possible bio-marker for future observations of exoplanets [118] . In 

order to understand the impacts of ozone on the atmosphere and 
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Fig. 8. Log intensity diagram for the 16 O 3 lines in the 20 0–50 0 0 cm 

−1 range in HITRAN2016: every point corresponds to a single transition. Newly included lines are colored 

green, updated lines blue and unchanged HITRAN2012 lines grey (intensities are given in cm 

-1 /molecule ·cm 

-2 at 296 K). 

to monitor ozone a precise, knowledge of its line parameters at all 

wavelengths is required. 

The ozone parameters for this edition of HITRAN have been up- 

dated in two steps. First, the parameters of spectroscopic models, 

line positions, intensities, and lower-state energy levels resulting 

from analyses of experimental spectra have been introduced into 

the S&MPO (Spectroscopy and Molecular Properties of Ozone) in- 

formation system [119] . The S&MPO offers various tools for spec- 

tral simulations and for comparisons with experimental records. 

At the initial stage of the work, line lists were generated using 

empirically-fitted model parameters of the effective Hamiltonians 

(EH) which considered nearby strongly interacting levels and of 

the corresponding effective dipole transition moments (ETM). This 

procedure was necessary to obtain complete sets of transitions 

as only a limited number of unblended lines could be accurately 

measured in congested ozone spectra. State-of-the-art studies of 

ozone laboratory spectra in the infrared have been recently re- 

viewed by Barbe et al. [120] and Mikhailenko [121] . Note that 

most of the compilations of ozone data in the infrared accessible 

via the VAMDC (Virtual Atomic and Molecular Data Center) portal 

[122,123] are also based on the S&MPO line lists. This is the case of 

recent improvements in HITRAN and also in GEISA [49] for which 

the last release essentially contained the earlier 2015 update from 

the S&MPO. 

In the second step, the line lists were validated by simulating 

atmospheric spectra as discussed in Section 2.3.3 . 

The new or completely recalculated bands of the principal iso- 

topologue of ozone implemented in HITRAN2016 are summarized 

in Table 5 . The present release of the ozone data contains 29,006 

new lines and 46,688 updated lines of 16 O 3 (a graphical overview 

in the 20 0-50 0 0 cm 

-1 region can be seen in Fig. 8 ). 

2.3.1. Cold bands 

2.3.1.1. 5-μm region: tetrad {(0 02),(101),(20 0),(030)} – (0 0 0). The 5- 

μm range is of particular importance for the retrieval of atmo- 

spheric ozone from ground-based and satellite observations, as this 

is the second strongest absorbing range in the ozone spectrum af- 

ter the 10-μm bands. For this reason, the consistency of ozone in- 

tensities between the 5-μm and 10-μm regions as well as with UV 

ozone absorption is a major issue that has been a subject of many 

discussions ([124,125] and references therein). The line parameters 

in previous HITRAN versions for the strongest bands, i.e. the first 

triad ν1 + ν3 , 2 ν1 , 2 ν3 , in the 5-μm interval were from the work by 

Flaud et al. [126] . Subsequently, the FTS spectra were re-visited by 

Barbe et al. [127] though the corresponding data had not been in- 

cluded in HITRAN. Recently new measurements and analyses have 

been performed by the GSMA (Groupe de Spectrométrie Molécu- 

laire et Atmosphérique) team from Reims University [120,128] . In 

2015, a major update of line positions and intensities based on 

the list generated together with the Laboratory of Theoretical Spec- 

troscopy of the Institute of Atmospheric Optics (Tomsk) was intro- 

duced in the S&MPO [119] . For the 2 ν1 and 2 ν3 bands, the differ- 

ence in the integrated intensities, S V , exceeded 6% between S&MPO 

and HITRAN2012. The analysis [128] covering the 1856–2273 cm 

−1 

region also included the 3 ν2 band, which is coupled with ν1 + ν3 

via an accidental Coriolis interaction. Another resonance accounted 

for in this list explains the anomalously strong �K a = 5 lines that 

have been detected in atmospheric observations by Goldman et 

al. [129] . Janssen et al. [125] reported a comparative study of the 

sensitivity of FTIR ground-based measurements of the atmospheric 

ozone concentration with respect to line parameters included in 

the HITRAN2012, GEISA2015 and S&MPO databases in 10- and 5- 

μm regions. They have concluded that “only S&MPO gives an en- 

tirely consistent result at the ± 1% level”. Consequently, we in- 

clude the S&MPO line positions and intensities in the present HI- 

TRAN release. This should improve both intensity distribution in 

the ro-vibrational lines of the 5-μm bands and their consistency 

with the 10-μm range. The line-shape parameters for all the lines 

were estimated using the semi-empirical procedure described in 

the HITRAN2008 paper. This model largely relies on a slightly re- 

vised empirical model for the fundamental bands from Ref. [130] . 

2.3.1.2. 2335–2617 cm 

−1 : bands {(120),(021)}–(0 0 0). Another spec- 

tral interval where S&MPO and HITRAN2012 ozone data differ sig- 

nificantly is for the 2 ν2 + ν3 , ν1 + 2 ν2 bands in the 2335-2617 cm 

−1 

range. Previous HITRAN versions included the MIPAS list [131] for 
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Table 5 

HITRAN2016 ozone update summary: principal isotopologue 16 O 3 . 

Band v ′ -v ′′ N Region (cm 

−1 ) S v 

001–010 1781 281.14–377.51 1.255 × 10 −21 

100–010 619 295.42–446.63 2.646 × 10 −23 

030–020 2558 598.26–804.86 1.942 × 10 −21 

101–020 6 656.12–725.68 4.937 × 10 −25 

0 02–10 0 1779 899.45–1176.42 3.233 × 10 −21 

101–100 3604 911.32–1215.49 6.100 × 10 −20 

101–001 3457 921.37–1211.67 5.148 × 10 −21 

0 02–0 01 4379 926.56–1193.79 1.651 × 10 −19 

20 0–10 0 3966 940.22–1229.80 3.141 × 10 −21 

030–100 20 956.13–1170.40 1.916 × 10 −23 

20 0–0 01 2964 956.68–1235.44 6.852 × 10 −21 

030–001 15 957.33–1201.66 2.254 × 10 −24 

002–010 467 1302.52–1435.34 3.750 × 10 −23 

101–010 1637 1347.52–1438.73 9.393 × 10 −22 

030–010 369 1366.12–1475.95 2.268 × 10 −23 

200–010 102 1366.62–1541.76 5.305 × 10 −24 

0 02–0 0 0 6486 1856.83–2280.54 1.019 × 10 −19 

20 0–0 0 0 6122 1909.98–2340.81 3.020 × 10 −20 

101–0 0 0 7067 1921.44–2328.94 1.194 × 10 −18 

030–0 0 0 105 2022.87–2272.37 4.092 × 10 −22 

021–0 0 0 1482 2335.99–2440.14 4.360 × 10 −22 

120–0 0 0 2095 2395.22–2616.83 3.063 × 10 −22 

013–010 2459 2889.23–3090.28 4.735 × 10 −21 

112–010 2046 2910.00–3121.94 3.816 × 10 −22 

023–010 1355 3564.72–3657.05 3.676 × 10 −22 

013–0 0 0 2673 3584.62–3791.77 5.713 × 10 −21 

122–010 620 3584.75–3751.75 3.530 × 10 −23 

112–0 0 0 3056 3600.25–3831.27 8.306 × 10 −22 

400–010 4 3623.87–3653.87 6.743 × 10 −25 

311–100 729 3739.97–3826.22 2.398 × 10 −23 

0 05–10 0 508 3742.91–3726.13 1.660 × 10 −23 

104–100 51 3752.69–3863.55 8.192 × 10 −25 

0 05–0 01 278 3807.31–3917.54 9.849 × 10 −24 

311–001 436 3810.30–3946.73 9.846 × 10 −24 

104–001 950 3820.17–3894.94 2.218 × 10 −22 

005–010 848 4128.33–4228.24 2.371 × 10 −23 

311–010 1018 4129.14–4228.62 3.4 4 4 × 10 −23 

104–010 66 4146.09–4228.28 6.310 × 10 −25 

023–0 0 0 1192 4268.37–4357.21 1.928 × 10 −22 

122–0 0 0 724 4284.15–4454.93 4.359 × 10 −23 

40 0–0 0 0 8 4325.56–4398.58 5.896 × 10 −25 

213–100 63 4384.72–4423.50 1.417 × 10 −24 

321–100 126 4 429.78–4 466.82 5.750 × 10 −24 

114–001 306 4452.15–4508.72 1.313 × 10 −23 

213–010 503 4757.08–4825.80 2.346 × 10 −23 

104–0 0 0 1093 4 802.98–4 978.61 7.789 × 10 −23 

0 05–0 0 0 1514 4 806.33–4 938.21 5.300 × 10 −22 

311–0 0 0 1053 4 827.65–4 928.4 9 3.450 × 10 −22 

Note : N is the number of transitions, S v is the integrated intensity in units of cm 

1 /(molecule ·cm 

2 ). 

2 ν2 + ν3 and older data from Flaud et al. [126] for ν1 + 2 ν2 . S&MPO 

data in this range were initially based on the analyses of Barbe 

et al. [132] . Subsequently, new Reims FTS measurements with a 

better signal-to-noise ratio [120] suggested an empirical intensity 

scaling factor of 0.86 for these bands. The resulting line list is pro- 

vided for this release of HITRAN. Recently, accurate ab initio dipole 

moment surfaces of ozone were constructed by Tyuterev et al. 

[133] that allowed theoretical intensities to be obtained from varia- 

tional nuclear-motion calculations which used the potential energy 

surface of Ref [134] . The shape of the ν1 + 2 ν2 band given by these 

calculations is qualitatively more consistent with the S&MPO data 

incorporated in the new list of HITRAN2016 than HITRAN2012 (see 

Fig. 9 ). 

2.3.1.3. 3584–3831 cm 

−1 range: {(013),(112)}–(0 0 0) bands. The 

S&MPO contains data for the ν2 + 3 ν3 and ν1 + ν2 + 2 ν3 bands in 

the range 3584–3831 cm 

−1 based on a larger sample of assigned 

transitions [135] than the previous releases of HITRAN (see Table 

4 of Babikov et al. [119] ). The parameters can be found in the cor- 

responding sections of the online S&MPO site [119] , and 5729 tran- 

sitions are now included that makes the integrated intensity of the 

ν1 + ν2 + 2 ν3 band nearly 5 times stronger ( Table 5 ) than in the 

previous release. 

2.3.1.4. 4268–4399 cm 

−1 range: {(023),(122),(40 0)}–(0 0 0) bands. 

In the range 4200– 4525 cm 

−1 , only the 3 ν1 + ν3 [136] and 

2 ν1 + 2 ν2 + ν3 [137] cold bands were included in the previ- 

ous releases of HITRAN, whereas the 2 ν2 + 3 ν3 , ν1 + 2 ν2 + 2 ν3 

and 4 ν1 bands in the 4268–4399 cm 

−1 range were miss- 

ing, although they correspond to a total integrated intensity 

of 2.4 × 10 −22 cm 

−1 /molecule cm 

−2 . The corresponding analyses 

[121,138] are as yet unpublished, but the line parameters can be 

found at the online S&MPO site [119] and are now incorporated in 

HITRAN2016. 

2.3.1.5. 4802–4929 cm 

−1 range: {(005),(311),(104)}– (000) bands. 

Line parameters for the 5 ν3 , 3 ν1 + ν2 + ν3 and ν1 + 4 ν3 bands 

around 4900 cm 

−1 are calculated for the HITRAN database us- 

ing the spectroscopic parameters of Flaud et al. [139] . These 

bands were then re-analyzed using new spectra recorded in 
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Fig. 9. Comparison of HITRAN2012 and HITRAN2016 ozone line lists in the range 

of 2 ν2 + ν3 and ν1 + 2 ν2 bands with recent ab initio calculations using the dipole- 

moment surface of Tyuterev et al. [133] that provides qualitative confirmation of 

the rotational distribution of intensities in the ν1 + 2 ν2 band given by HITRAN2016. 

Reims [120] resulting in a new set of the Hamiltonian parame- 

ters for the strongly coupled {(005),(104),(311)} vibration states. 

The corresponding line lists have been generated using these im- 

proved spectroscopic parameters. Unpublished Hamiltonian param- 

eters can be found in the S&MPO system at http://smpo.iao.ru/ 

1408x675/en/lev/par/1/19/ . The (S&MPO 

–HITRAN2012) differences 

in the line positions are up to 0.065 cm 

−1 . The intensity ratios for 

three cold bands are shown in Fig. 10 . 

2.3.2. Hot bands 

2.3.2.1. 281–447 cm 

−1 (dyad - ν2 ). The ozone spectrum in the range 

281–447 cm 

−1 is dominated by hot ν3 - ν2 and ν1 - ν2 bands whose 

intensities were underestimated in the previous HITRAN releases 

compared to the S&MPO line list [120] which was generated using 

the empirical transition moments parameters of Birk et al. [140] . 

The S&MPO parameters are confirmed by the recent ab initio in- 

tensity calculations [133] and the corresponding update is thus in- 

cluded in the present HITRAN release. 

2.3.2.2. 598–1541 cm 

−1 : hot bands towards the tetrad re- 

gion. The unpublished version of the newly determined 

tetrad {(0 02),(101),(20 0),(030)} parameters by Tyuterev et 

al. [128] can be found at the S&MPO online site ( http: 

//smpo.iao.ru/1396x659/en/lev/par/1/6/ ). Using this set, 14 hot 

bands in the range 598–1541 cm 

−1 that go from the (010), (020), 

(0 01) and (10 0) states to the tetrad were re-calculated and are 

now included in the present HITRAN release with a significantly 

augmented number of transitions. The transition moment pa- 

rameters of Ref. [128] for {(101),(030)}–(010) bands and those 

extrapolated from cold bands [141] were used. 

2.3.2.3. 2889–3122 cm 

−1 range: {(013),(112)}–(010) bands ; 3564–

3752 cm 

-1 range: {(023),(122)}–(010) bands . In the ranges 2889–

3122 cm 

−1 and 3564–3752 cm 

−1 the {(013),(112)}–(010) and 

{(023),(122)}–(010) hot bands are updated using the same upper- 

state EH parameters as for the corresponding cold bands and the 

ETM parameters of Mikhailenko et al. [142] 

2.3.2.4. 3623–4229 cm 

−1 : hot bands to the V = 5 triad 

{(005),(311),(104)}. New line lists for 14 hot bands in the range 

3623–4229 cm 

−1 corresponding to the transitions from the (010, 

(001) and (100) states to the updated [120] triad {(005),(311),(104)} 

of five vibrational quanta are also included. 

2.3.2.5. 4384–4826 cm 

−1 : missing hot bands to (213),(321) and (114) 

upper states. The coupled vibrational states {(213),(321),(114)} 

have been re-analyzed in Ref [143] with the FTS spectra recorded 

in Reims. Using these upper-state parameters we now provide 

four associated hot bands [119] in the range 4384–4826 cm 

−1 

that were missing in previous HITRAN versions. The ETM pa- 

rameters were extrapolated from the corresponding cold bands: 

for 2 ν2 + ν2 + 3 ν3 - ν1 and ν2 + ν2 + 4 ν3 - ν3 from Ref [144] , for 

2 ν2 + ν2 + 3 ν3 - ν2 from Ref [145] , and for 3 ν2 + 2 ν2 + ν3 - ν1 from Ref 

[137] . 

2.3.3. Validations and empirical corrections 

As mentioned in the introduction to Section 2.3 , the second 

step was a validation of effective model calculations by a compar- 

ison of simulated absorption cross-sections with observed spectra. 

To this end, high-resolution laboratory FTS spectra of Reims and 

Kitt-Peak (up to 5700 cm 

−1 ) were used alongside MklV balloon 

atmospheric spectra [146] , using similar procedures to those de- 

scribed by Toon et al. in [147] . The MkIV balloon spectra cover 

650–5650 cm 

−1 simultaneously in every spectrum, so every win- 

dow is fitted in every spectrum, making it easier to quantify 

window-to-window biases. 

No major problems were seen with the initial O 3 data set pre- 

pared for HITRAN2016, at least for strong and medium-strength 

bands. The new line list provides improved spectral fits in the 

2100 cm 

−1 region as compared with HITRAN2012 and also better 

consistency with other bands in terms of the retrieved O 3 amounts 

in the 20 0 0–220 0 cm 

−1 region. But it was found that empirical 

corrections were needed to some line positions to reduce residu- 

als between observed and simulated cross-sections. These correc- 

tions concern a limited sample of about 0.1% transitions and are 

essentially of two types. First, small line position corrections are 

typically of the order of ∼10 −3 cm 

−1 up to 10 −2 cm 

−1 in a few 

cases. The most extreme deviations were corrected already for HI- 

TRAN2016, but additional corrections will be done in the near fu- 

ture. Note that these corrections are not reflected in Table 5 where 
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Fig. 10. Intensity ratios for the 5 ν3 (red circles), 3 ν1 + ν2 + ν3 (blue triangles) and ν1 + 4 ν3 (olive triangles) bands between the previous HITRAN2012 line list and S&MPO 

data that are incorporated in the new HITRAN2016 release (color can be seen in online version of paper). 

only updates for entire bands rather than individual transitions 

were carried out. A total of 75,694 lines for 16 O 3 have been added 

or updated (this includes corrections from Table 5 and the empir- 

ical corrections discussed in this subsection). Note that there are 

289,340 lines of the principal isotopologue of ozone in total in the 

HITRAN2016 edition. Secondly, there is an indication that pressure- 

induced line shift parameters may need to be added or extended 

in the future. 

It is known [120] that for the fundamental bands the effec- 

tive model fits reproduce observed spectra within experimental ac- 

curacy ( ∼10 −4 cm 

−1 for line positions), but the precision of the 

calculations gradually decreases for higher wavenumber ranges. 

The RMS of available line position fits increases on average to 

∼0.001 cm 

−1 in the 3000 cm 

−1 region, to ∼0.002 cm 

−1 around 

40 0 0 cm 

−1 and to ∼0.003 cm 

-1 in the 50 0 0 cm 

−1 range, primarily 

because of accidental resonances. A typical example is a sharp res- 

onance of the (111) state interacting with the “dark” (040) state for 

[ J,K a ] = [44, 4] that was not included in the effective model. This 

resonance produces a perturbation of 0.048 cm 

−1 in line positions 

and mixing of the line intensities between coupled transitions. The 

upper-state energy level and six corresponding P, Q, R- transitions 

have been empirically corrected both for the cold ν1 + ν2 + ν3 and 

hot ν1 + ν2 + ν3 - ν2 bands. The major part of the relatively large 

line position corrections ( ∼0.02–0.12 cm 

−1 for about ten transi- 

tions) to previous HITRAN line lists occurs near 2.5-μm and corre- 

sponds to the analysis of {(103),(004),(310)}-(000) bands by Perrin 

et al. [148] . This region is extremely complicated to model because 

of the strong coupling of 9 bands including some “exotic” reso- 

nances, for instance{(103),(004)} with (310) and {(211),(202),(032)}. 

Analyses of new spectra recorded in Reims for these bands are in 

progress as outlined in Refs. [120,121] , but are not yet finalized. In 

the meantime, empirical corrections have been applied to corre- 

sponding series of levels, mostly around 40 0 0 cm 

−1 , and to asso- 

ciated transitions. This process removes some noticeable residuals 

between simulated and observed absorption cross-sections. 

Relative intensities of various bands play a key role in terms 

of the consistency of retrieved O 3 amount from different spec- 

tral windows. From this point of view, the HITRAN2016 line list 

is certainly much better than its predecessors. For example, the 

HITRAN2016/S&MPO linelist produces 8% larger retrieved amounts 

around 2182 cm 

−1 than previous line lists, bringing this region 

into better consistency with others. This improvement can be at- 

tributed to the major update of the tetrad {(101),(20 0),(0 02),(030)} 

bands [120,128] in the 5-μm region and confirms the conclu- 

sion of Janssen et al. [125] concerning the internal consistency 

of the S&MPO list that is now incorporated in HITRAN2016. The 

30 0 0 cm 

−1 region yields the lowest retrieved O 3 amounts, about 

5% lower than average, in fits to MklV limb spectra and Kitt Peak 

lab spectra [146] . This indicates possible errors in line widths or 

intensities, since the errant line positions were corrected. 

2.3.4. Future work 

There remain several issues for future work. The problem of ab- 

solute ozone intensities is still an important challenge [120,124] re- 

quiring very precise measurements and ab initio calculations with 

absolute uncertainties better than 1–3%. This concerns particularly 

the isotopic species. New data on 

17 O- and 

18 O- containing iso- 

topologues will be produced in the near future. Modeling of the 

complicated 2.5 μm region [120,121,148] must be significantly im- 

proved. In general, for the spectral intervals beyond the fundamen- 

tal bands, the effective models do not provide experimental ac- 

curacy for all lines. In order to obtain line position accuracy that 

is better than 0.001 cm 

−1 in the FTS range, which is important 

for atmospheric applications, we could extend experimental deter- 

mination of ro-vibrational levels and systematically replace transi- 

tion frequencies by available empirical (E–E ′ )/h values as described 

in Refs. [149,150] where this approach was used for the analysis 

and line lists of CRDS spectra. Further extension of ozone spec- 

tral data to highly-excited states near the dissociation threshold 

(Ref. [151] and references therein) would also be important for the 

understanding of the dynamics of ozone formation and depletion 

[152] and for interpretation of satellite observations involving non- 

LTE effects in the upper atmosphere. 

2.4. N 2 O (molecule 4) 

The N 2 O line list has been updated using the recently-published 

line list for the 14 N 2 
18 O ( 14 N 

14 N 

18 O) isotopologue [153] . In the im- 

mediate future, we will also add (for the first time) the line list 
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that has already been constructed for the 15 N 2 
16 O ( 15 N 

15 N 

16 O) iso- 

topologue based on Ref. [154] . Both line lists were generated using 

the results of the global modeling of the line positions and inten- 

sities within the framework of the method of effective operators. 

The polyad model of effective Hamiltonian (EH) [155] was used 

in both cases. The parameters of the effective Hamiltonians were 

fit to the line positions collected from the literature. The global 

RMS of the line position fit for 15 N 2 
16 O is 0.0011 cm 

−1 and for 
14 N 2 

18 O is 0.0016 cm 

−1 . The uncertainties in the fitted line posi- 

tions depend on the quality of experimental data and vary from 

0.0046 cm 

−1 to 2 × 10 −6 cm 

−1 . 

The line intensities were calculated using fitted sets of the ef- 

fective dipole moment parameters for a particular isotopologue 

where possible. Note that the line intensity measurements for rare 

isotopologues of N 2 O are very scarce. Therefore, based on the the- 

oretical results of Ref. [156] (in which contributions due to isotopic 

substitution to the values of the effective dipole moment parame- 

ters were shown to be negligible) the majority of the line intensi- 

ties were calculated using the effective dipole moment parameters 

of the principal isotopologue [157] . The partition sums were taken 

from Ref. [112] for 14 N 2 
18 O and calculated using direct summation 

for 15 N 2 
16 O [154] . 

It is well known that the nitrous oxide EH polyad model does 

not work in a totally satisfactory manner because of the exis- 

tence of a number of Coriolis and anharmonic interpolyad reso- 

nance interactions (see, for example, Refs. [158,159] ). But usually 

these kinds of interactions take place in the high-wavenumber 

region for the weak bands. Adopting an intensity cutoff of 

10 −29 cm 

−1 /molecule cm 

−2 at 296 K, including the isotopic abun- 

dance factors 1.986 × 10 −3 for 14 N 2 
18 O and 1.32 × 10 −5 for 15 N 2 

16 O, 

overcomes the problem of the interpolyad resonance perturbations 

in practice because the most affected transitions are omitted. Nev- 

ertheless, line parameters for the very weak bands have to be used 

with caution. 

For the 14 N 2 
18 O isotopologue, Toth’s [160] lines given in HI- 

TRAN2012 are retained and only new line parameters from the 

line list of Ref. [153] are added to HITRAN2016. Line positions 

from the line lists of Refs. [153,154] are assigned uncertainty code 

6 (0.0 0 0 0 01–0.0 0 0 01 cm 

−1 ) in the MW region and 3 (0.001–

0.01 cm 

−1 ) in the IR region. For the line intensities from these line 

lists, the uncertainty code 3 ( > 20%) is adopted. 

Line-shape parameters as well as Rosenkranz [35] line-mixing 

coefficients for the main isotopologue lines belonging to the ν3 

ro-vibrational band are taken from the work of Loos et al. [161] . 

These parameters originate from a multispectrum fit of air broad- 

ened Fourier-Transform transmittance measurements at ambient 

temperature. The experimental data of Loos et al. was fitted using 

a quadratic speed-dependent Voigt model based on the Hartmann- 

Tran profile [7,8,14] , extended to account for line mixing in the 

Rosenkranz first-order perturbation approximation [35] . As a re- 

sult, air-broadening, air-speed-dependence, air pressure shift and 

line-mixing parameters were retrieved in the spectral range 2184.8 

to 2251.6 cm 

−1 for P- and R-branch lines up to J ′′ = 40 and 39, re- 

spectively. 

2.5. CO (molecule 5) 

In order to improve the quality and consistency (between bands 

and isotopologues) of the intensities of the lines of carbon monox- 

ide in HITRAN, a new piece-wise dipole moment function (DMF) 

was created [162] using the direct fit approach that was developed 

in Ref. [163] , supplemented with new ab initio calculations [162] . 

In order to ensure the best results, new experiments were carried 

out in Ref. [162] for the 4–0 band and the first measurements of 

the 6–0 band were performed to add into the direct fit. 

The line intensity and position calculations were performed us- 

ing this new DMF in conjunction with the wavefunctions calcu- 

lated from the experimentally-determined potential energy func- 

tion (PEF) from Coxon and Hajigeorgiou [164] . Calculations were 

carried out using version 8.0 of LEVEL [165] . 

The new dipole moment function has proven to be a substan- 

tial improvement over the one used previously. In this edition of 

the database it was used to calculate HITRAN intensity values in all 

the bands of all isotopologues. Fig. 6 of Li et al. [162] shows a com- 

parison of the available experimental data in different bands of the 

principal isotopologue, with new calculations, HITRAN2012, and ab 

initio calculations. It is clear that intensities from Li et al. agree 

much better with experimental values than previous data. This also 

becomes important for the consistency of intensities between the 

isotopologues (due to the use of the same dipole moment func- 

tion for all of them); previously a lot of lines for the principal iso- 

topologues had intensities from accurate laboratory measurements 

whereas minor isotopologue intensities were still calculated with 

outdated dipole moment functions. Finally, the new work allows 

one to add a few more bands and also line lists for radioactive 

isotopologues of carbon monoxide, which, as we mentioned in the 

CO 2 section, are provided in static files rather than through the HI- 

TRANonline interface. 

Apart from the intensities, the Li et al. line list features: a) 

line positions calculated based on the potential energy function 

from Ref. [164] ; b) air- and self-broadening parameters from a so- 

phisticated semi-empirical approach, c) air-induced shift obtained 

for all the lines by extrapolating measurements carried out in the 

2–0 band by Devi et al. [166] , where the Hartmann and Boulet 

[167] approach was used for extrapolating; d) widths (and their 

temperature dependencies) and shift due to pressure of H 2 and 

CO 2 important for planetary and combustion research were also 

provided employing semi-empirical approaches similar to the ones 

used for air and self pressure-induced values. 

We have adapted the Li et al. line list for this edition of the 

HITRAN database with a few notable changes: 

1) Since the original Li et al. line list was aimed at high- 

temperature applications, it was truncated here with an inten- 

sity cutoff of 10 −31 cm 

−1 /(molecule •cm 

−2 ) (in natural abun- 

dance of the isotopologues) for all the lines except those in 

the MW region where a cutoff of 10 −42 cm 

−1 /(molecule •cm 

−2 ) 

was used to satisfy some astrophysical applications. 

2) It was found that there was a minor compatibility issue be- 

tween LEVEL and PEF from Coxon and Hajigeorgiou [164] . This 

resulted in a growing (with rotational quantum number) devia- 

tion of the calculated line positions from their real values. This 

has now been fixed. 

3) The line positions from the high-accuracy experiments that 

employ best calibration standards, including frequency combs, 

were used wherever available. In the first overtone, data from 

Pollock et al. [168] were used, in the second overtone data from 

Refs. [169,170] were employed, while in the fifth overtone Tan 

et al. line positions were taken when available [171] . 

4) When high-quality experimental measurements of the air- and 

self-broadening and shift parameters were available in HI- 

TRAN2012, they were taken in place of the semi-empirical 

values from Li et al. This includes the values for the speed- 

dependent Voigt (with line mixing) profile for the first overtone 

from Devi et al. [166,172] . 

5) Helium-broadening parameters, their temperature dependence 

and pressure shift due to He were added. The broadening pa- 

rameters were taken from Sinclair et al. [173] who provide both 

experimental values and values obtained from a fit to a semi- 

empirical model. We used experimental values where available 

and semi-empirical values for all other transitions. Although 
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Table 6 

Scheme of HITRAN2016 update of 12 CH 4 and 13 CH 4 . All regions not given in the table remain identical to the HITRAN2012 edition. 

Range (cm 

−1 ) Positions Intensities Line shapes 

0–1370 HIT12, with many hot bands removed. P1–P0 

( ν4 band only), P1–P1, P2–P2, P3–P3, P2-P1 

and P3–P2 from MeCaSDa [186] , 13 CH 4 ν2 

band restored from HIT08 

P1–P0 ( ν4 band only), P1–P1, P2–P2, P3–P3 

and P3–P2 from MeCaSDa [186] , P2-P1 from 

HIT08 

HIT12 when available or 

algorithm from Ref. [176] 

1370–40 0 0 HIT12 with many line positions fixed using 

HIT08,S Tyuterev et al. [187] and empirical 

adjustments of HIT12 to properly fit KP 

spectra. Several missing lines restored from 

HIT08. 

HIT12 HIT12 

40 0 0–4315 HIT08 with many lines improved using some of 

the preliminary results from Birk et al. [188] , 

and occasionally HIT12 

HIT08 with many lines improved using some of 

the preliminary results from DLR Birk et al. 

[188] 

HIT08 and in some cases HIT12 

4499–4630 HIT12 mixed with Devi et al. [189] HIT12 mixed with Devi et al. [189] 

4670–5300 Nikitin et al. [190] with 

10 −27 cm 

−1 /(molecule ·cm 

−2 ) cutoff applied in 

480 0–50 0 0 cm 

−1 region 

Lyulin et al. [191] 

5300–5550 Nikitin et al. [192] Lyulin et al. [191] 

5550–5855 GOSAT list [193] for 12 CH 4 . Other isotopologues 

HIT12 

GOSAT list [193] , or algorithm 

from Ref. [176] 

5855–6250 GOSAT list [193] with some lines from Nikitin 

et al. [194] and HIT12 based on validation for 
12 CH 4 . For 13 CH 4 Starikova et al. [195] . 

GOSAT list [193] , Lyulin et al. 

[191] or algorithm from Ref. 

[176] 

7920–8250 CRDS measurements Béguier et al. [196] Algorithm from Ref. [176] 

9028–10,435 FTS measurements Béguier et al. [197] Algorithm from Ref. [176] 

Note : HIT16 = new HITRAN edition, HIT08 = HITRAN2008 edition [198] , HIT12 = HITRAN2012 edition [1] , KP = Kitt Peak FTS lab spectra. 

these measurements were carried out only in the fundamental 

band, they were used here for all lines ignoring vibrational de- 

pendence. The temperature dependence of this broadening was 

taken to be 0.6 for all the lines based on the average value of 

the measurements by Picard-Bersellini et al. [174] . Finally, the 

pressure induced shifts are based on measurements of Luo et al. 

[175] in the fundamental band and extrapolated wherever pos- 

sible to other bands using the Hartmann and Boulet [167] ap- 

proach. 

2.6. CH 4 (molecule 6) 

The state-of–the art of methane data in the previous HITRAN 

releases has been described by Brown et al. [176] . Since then, 

several new studies have been in progress or have been pub- 

lished both for cold and room-temperature spectra [177–183] and 

hot spectra measurements [184,185] , although many experimental 

spectra have not yet been fully analyzed. Toon et al. [147] have 

reported some deficiencies in available databases including HI- 

TRAN2012 [1] by simulations of solar occultation spectra, acquired 

by the JPL MkIV Fourier transform spectrometer from balloon, cov- 

ering the 650–5650 cm 

−1 region. These deficiencies have been ad- 

dressed in this new edition, which includes superior spectral pa- 

rameters and new lines and bands for 12 CH 4 and 

13 CH 4 . At this 

time no update was made to CH 3 D. An overall brief picture of 

the update is given in Table 6 , while the details are given in the 

subsequent sections. Note that only regions where revision to HI- 

TRAN2012 was carried out are shown. In the regions not men- 

tioned in the table, HITRAN2012 line parameters have been re- 

tained. 

2.6.1. Hot bands in the spectral range below 1370 cm 

−1 

The HITRAN2012 database exhibited some noticeable problems, 

including those with hot band lines of 12 CH 4 in the low wavenum- 

ber range. The line list in this spectral region relies on calculations 

resulting from the effective Hamiltonian and dipole moment pa- 

rameter fits, since extensive experimental line assignments have 

not been performed for many years. However, extrapolation er- 

rors have been introduced in some small spectral regions that 

were insufficiently well characterized. Recently, a new global fit 

of methane lines including high-temperature emission data in the 

1100–1500 cm 

−1 region was published [185] . This study included 

a huge number of new assignments and allowed a much more 

reliable modeling of hot-band lines. It has resulted in a determi- 

nation of effective Hamiltonian parameters. The results were first 

used to update the MeCaSDa database [186] of calculated methane 

lines. Fig. 11 compares the resulting computed cross-sections with 

the HITRAN2012 and ExoMol [199] databases. This plot, in loga- 

rithmic scale, clearly displays that there was likely a problem in 

HITRAN2012 but better agreement of the new calculated line list 

with Exomol. 

It is well known that measurement and modeling of line inten- 

sities in high-temperature spectra are quite difficult, particularly in 

non-Boltzmann conditions. In order to avoid large uncertainties in 

extrapolated intensities, as was the case for some hot bands in the 

previous HITRAN editions, we have checked new lists against ab 

initio calculations. The line lists for hot bands resulting from new 

experimental spectra analyses by Amyay et al. [185] . were com- 

pared to first-principle variational calculations of line intensities by 

Rey et al. [200,201] , based on the ab initio dipole moment and po- 

tential energy surfaces of Nikitin et al. [202–204] as reported in 

the TheoReTS database [205] . An example of comparison is given 

in Fig. 12 . Those bands that were in good intensity agreement were 

considered sufficiently reliable to be incorporated in this new HI- 

TRAN release. Some other bands require further investigation and 

were not included. Note that, at this stage, these qualitative com- 

parisons did not involve line assignment or line position valida- 

tions. 

This new calculated line list was thus used to replace some of 

the HITRAN2012 lines in order to generate the HITRAN2016 up- 

date, for the P1–P0 (Dyad–GS, for the ν4 band only), P1–P1 (Dyad–

Dyad), P2–P2 (Pentad–Pentad), P3–P3 (Octad–Pentad) and P4–P3 

(Tetradecad–Octad) transitions (a schematic of the polyads can be 

seen in Fig. 2 of Ref. [5] ). Table 7 shows the spectral regions and 

the number of lines that exist in MeCaSDa and what proportion of 

them was adapted for HITRAN2016. It is important to mention that 

validations against theoretical [205] and laboratory [185] spectra 

suggested adapting the P2-P1 line list from MeCaSDa, with inten- 

sities adapted from HITRAN2008 wherever possible. 

It should also be noted that, recently, new highly-accurate mea- 

surements of pure rotation lines were performed in the Dunkerque 
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Fig. 11. Comparison of cross-sections calculated at 1 cm 

−1 resolution between different databases: MeCaSDa [186] (used for the present HITRAN update), HITRAN2012, and 

ExoMol [199] . 

Fig. 12. Comparison of line intensities for hot bands of 12 CH 4 in the 7 to 8 μm range using the HITRAN2016 updated list based on experimental spectra analyses, Amyay et 

al. [185] (upper panels in black) with variational calculations, Rey et al. [201] based on ab initio dipole moment [202] and potential energy [203,204] surfaces using the line 

list included in the TheoReTS database [205] (lower panels upside down in red). 

Table 7 

Number of calculated 12 CH 4 lines taken from the MeCaSDa database [186] for some transi- 

tions, up to a maximum J value. The difference for the number of lines in the two databases 

is due to a different intensity cut-off with I min down to 10 −40 cm/molecule in MeCaSDa. 

The weakest transitions were not retained for the present HITRAN update that includes I min 

= 10 −25 for P3-P2 and 10 −30 cm/molecule for other hot bands. 

Transition P1–P0 ( ν4 ) P1–P1 P2–P2 < 300 cm 

–1 P3–P2 < 1370 cm 

–1 

J max 30 30 30 30 

# lines (MeCaSDa) 13,315 54,677 457,620 2,175,406 

# lines(HIT16) 9662 9721 10,701 950 

group [206] . These lines have been included in the global fit lead- 

ing to the effective Hamiltonian parameters used for the present 

update. 

2.6.2. 1370–40 0 0 cm 

−1 region 

This region mainly includes the ν2 band, the Pentad bands and 

relatively weak bands at the lower part of the Octad. As discussed 

by Toon et al. [147] , HITRAN2012 data were plagued with erro- 

neous line positions for lines of intermediate strength, many of 

which had been substantially superior in the HITRAN2008 edition 

of the database. It was found that a large number of these lines 

had been assigned line position uncertainty code 1 (i.e. between 

0.1 and 1 cm 

−1 ) and originate from the model used in Daumont 

et al. [207] . For HITRAN2016, wherever possible in the Pentad re- 
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gion, these transitions were reverted to HITRAN2008 and, where 

this was not possible, line positions from Tyuterev et al. [187] were 

used. Unfortunately not all problematic line positions were easy to 

identify on a global scale by just the uncertainty index. Validations 

against Kitt Peak FT spectra recorded at multiple thermodynamic 

conditions have shown that more errors associated with line posi- 

tions remained although the offending lines were not labeled with 

a low uncertainty code. The most obvious outliers have been iden- 

tified and fixed either by employing Ref. [187] or adjusting line po- 

sitions to fit the low-pressure KP experimental spectra. This pro- 

vided a significant improvement of the residuals, including those 

discussed in Toon et al. [147] . 

2.6.3. 40 0 0–4630 cm 

−1 (correspond to strongest octad bands) 

Just as for the Pentad region, HITRAN2012 data had substantial 

errors in line positions for lines of intermediate strength, while 

better values actually existed in the HITRAN2008 edition of the 

database. However, unlike the Pentad region, the intensities of 

lines in the Octad region were also often inferior to those from HI- 

TRAN2008. Also, unlike the Pentad region, reverting line positions 

of HITRAN2012 lines with uncertainty code 1 to the HITRAN2008 

values did not always work. One should also keep in mind that HI- 

TRAN2008 was not better than HITRAN2012 everywhere in this re- 

gion. In addition to lacking 13 CH 4 lines in that region, HITRAN2008 

contained many duplicated transitions. Often a transition would 

appear as an empirical unassigned line as well as predictions from 

Hilico et al. [208] . With that being said, some observable transi- 

tions were also missing in HITRAN2008. 

The following procedure was therefore developed: 

1) In the 40 0 0–4315 cm 

−1 region, the HITRAN20 08 line list was 

used as the starting point. Many unassigned empirical lines 

were then given assignments and lower-state energies from 

corresponding predicted Hilico et al. [208] lines, while pre- 

dicted lines (usually with inaccurate line position and inten- 

sity) were removed. In the region 4190–4315 cm 

−1 , parame- 

ters of lines with the worst remaining residuals (with respect 

to low-pressure Kitt Peak FTS spectra) were then replaced with 

the preliminary results of Birk et al. [188] , which used quantum 

assignments of yet unpublished theoretical work [209] that was 

not always the same as in HITRAN2012. 

2) In the 4315–4499 cm 

−1 region, HITRAN2012 parameters were 

retained. 

3) In the 4499–4630 cm 

−1 region, a mixture of HITRAN2012 with 

parameters from Devi et al. (where available) was used [189] . 

Fig. 13 shows fits to TCCON spectra measured from Park Falls, 

WI, in March 2005 at a solar zenith angle of 58 deg., in windows 

used by TCCON to retrieve CO. The left panels show fits to the re- 

gion occupied by the CO P-branch. The right panels show fits in 

the R-branch region. The CO lines are less than 10% deep and so 

are mainly hidden by stronger CH 4 and solar lines. The upper pan- 

els show fits using HITRAN2012 CH 4 ; the lower panels with the HI- 

TRAN2016 CH 4 linelist. The rms spectral fits and the peak residuals 

are significantly reduced in both windows with the HITRAN2016 

linelist. The retrieved CH 4 amounts (written over the top right of 

each panel) are much more consistent between the two windows 

using the HITRAN2016 linelist (0.1%), than when using HITRAN2012 

(2%). It implies that the 2016 CH 4 intensities are much more self- 

consistent across these two regions than in HITRAN2012. With that 

being said, there is still large room for improvements. A more con- 

sistent Octad list in terms of line parameters and assignments is 

planned to be worked out for the next HITRAN update. 

2.6.4. Tetradecad range 4800–6250 cm 

−1 

Contrary to the low-energy range, in the Tetradecad range and 

above, positions and intensities are mostly experimental values. 

The Tetradecad of methane contains 14 bands with 60 strongly 

coupled sub-bands with very congested spectra difficult to ana- 

lyze because of numerous resonance perturbations. The previous 

HITRAN2012 line list was mainly based on the analysis of Refs. 

[210,211] , which included about 30 0 0 assigned lines. This was 

only a partial assignment with relatively large uncertainties for 

about 70% of weak sub-bands. In HITRAN2016, major updates have 

been included in four spectral intervals. Long-path Fourier Trans- 

form spectra ( L = 1600 m) in the lower Tetradecad interval 4800–

5300 cm 

−1 recorded in Reims have been re-analyzed by Nikitin et 

al. [190] . The list includes transitions with line positions adjusted 

according to their measured values and transitions with calculated 

line positions, all intensities being derived from the model fit. For 

HITRAN2016 in the 480 0–50 0 0 cm 

−1 region, transitions with in- 

tensities greater than 10 −27 cm 

−1 /(molecule ·cm 

−2 ) were retained. 

In the next interval, 5300–5550 cm 

−1 , the list contains mostly 

observed positions and intensities. The analysis is in progress 

[192] , but a preliminary empirical line list is included in the 

present release because the previous versions were quite poor in 

this range. 

In the interval 5550–6250 cm 

−1 , a recent version of the 

GOSAT line list [193] is included. In the 2 ν3 region (5855–

6250 cm 

−1 ), the GOSAT line list [193] was supplemented with 

predominantly experimental line parameters of the WKLMC list 

(Wang-Kassi-Leshchishina-Mondelain-Campargue) obtained from 

high-sensitivity laser measurements in Grenoble [212] . The previ- 

ous GOSAT assignments [211] included in the HITRAN2012 list have 

been considerably extended in the recent work [194] based on 

new analyses in the 5855–6250 cm 

−1 range. The modeling of these 

complicated spectra was accomplished using an approach combin- 

ing ab initio calculations with effective Hamiltonian (EH) fits. Initial 

values of the EH parameters were first computed from the molecu- 

lar potential energy surface of Nikitin et al. [203] using irreducible 

tensor techniques [213,214] via the high-order contact transforma- 

tion method as described by Tyuterev et al. [187] . This information 

has been only partially adapted for HITRAN2016. Indeed, the val- 

idations against experimental and atmospheric spectra (similar to 

those done in Toon et al. [147] ) showed that the GOSAT line list 

[193] produces better residuals than the one from Ref. [194] , al- 

though the latter one is substantially more complete in terms of 

both amount of lines and proportion of assigned lines. In the end, 

the GOSAT line list [193] was supplemented with some lines from 

Ref. [194] and occasionally with HITRAN2012. For instance, very ac- 

curate line positions measured with frequency comb in Zolot et al. 

[215] were retained. In the future, a more sophisticated combina- 

tion of the GOSAT line list [193] and the one from Ref. [194] will 

be performed. For broadening, a combination of parameters from 

Lyulin et al. [191] , GOSAT line list and HITRAN2012 was used. 

2.6.5. Higher wavenumber ranges 

In the Icosad range (630 0–750 0 cm 

−1 ), the WKLMC list pro- 

vided empirical values of the lower-state energy levels. Recently, 

on the basis of global variational ab initio spectra predictions [180] , 

about 13,0 0 0 transitions of 108 new bands have been assigned 

[216] in the WKLMC list at 80 K and 296 K. The assigned experi- 

mental list at 80 K as well as calculated ones are provided as Sup- 

plementary Material of Rey et al. [216] . These assignments will be 

transferred and extended in the WKLMC list at 296 K and included 

in the next update of HITRAN. 

Fig. 14 gives an overview comparison between the HITRAN2012 

and HITRAN2016 lists of 12 CH 4 above 7920 cm 

−1 . New room- 

temperature measurements by Cavity Ring Down Spectroscopy 

(CRDS) in the 7920–8250 cm 

−1 interval have allowed better char- 

acterizing of the 1.25-μm methane transparency window [21] . In 

the Triacontad region (8250–9028 cm 

−1 ), line parameters relying 

on FTS measurements by Brown [42] remain unaltered with re- 

Please cite this article as: I.E. Gordon et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy & 

Radiative Transfer (2017), http://dx.doi.org/10.1016/j.jqsrt.2017.06.038 

http://dx.doi.org/10.1016/j.jqsrt.2017.06.038


22 I.E. Gordon et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 0 0 0 (2017) 1–66 

ARTICLE IN PRESS 

JID: JQSRT [m5G; August 21, 2017;14:18 ] 

Fig. 13. Fits to TCCON spectra measured from Park Falls, WI, in March 2005 at a solar zenith angle of 58 deg., in windows used by TCCON to retrieve CO. The left panels 

show fits to the region occupied by the CO P-branch. The right panels show fits in the R-branch region. The upper panels show fits using HITRAN 2012 CH 4 ; the lower 

panels with the HITRAN2016 CH 4 linelist. Note different scales. 

spect to HITRAN2012. Above 9028 cm 

−1 , new FTS line parame- 

ters are adopted in the region of the 3 ν3 band (9028–9200 cm 

−1 ) 

[22] . From the same FTS spectra, the first empirical line list was 

retrieved in the Tetracontad region (9520–10,435 cm 

−1 ) [22] . It is 

worth mentioning that between 7920 cm 

−1 and 10,923 cm 

−1 no 

assignments or empirical lower-state energy values are provided 

except for a few tens of transitions in the region of the 3 ν3 band 

near 9046 cm 

−1 . Complementary information in this case can be 

provided by variational ab initio predictions [31] . The estimated er- 

ror for line positions in the best first-principle calculation in the 

1-μm range is on average ∼ 0.3–2 cm 

−1 ; that is not sufficient 

for high-resolution applications. However, intensities are in qual- 

itatively good agreement with observations, see Fig. 15 . Recent ab 

initio intensity results [217] for the strongest 12 CH 4 lines below 

7600 cm 

−1 have confirmed accurately measured intensity values 

to 1–3% on average for the “stable” transitions non perturbed by 

accidental resonances. Predicted spectra [31] include lower-state 

energies for all lines and can be recalculated for various tem- 

perature conditions that make it suitable for low- and medium- 

resolution modeling of observations in planetary atmospheres sim- 

ilar to those reported for Titan in Ref [45] . 

Finally, in the 10,923–11,502 cm 

−1 spectral range, the HITRAN 

lists reproduce line parameters derived by Intracavity Laser Ab- 

sorption Spectroscopy (ICLAS) [220] . For the ICLAS data [176,220] , 

empirical lower-state energy values were derived by the two- 

temperature-method [221] . 

2.6.6. 13 CH 4 isotopologue 

In HITRAN2012, the entire ν2 band of 13 CH 4 (centered at about 

1550 cm 

−1 ) was accidentally dropped from the compilation. This 

band is now restored back from HITRAN2008 [198] . 

For the 13 CH 4 isotopologue, new measurements and analyses in 

the 3750–4700 cm 

−1 octad range have been reported by Brown et 

al. [222] for temperatures between 80 and 296 K. This included 

over 4700 positions and 3300 intensities for assigned observed 

transitions. The line list based on the analysis and spectra fits of 

this range contains 9500 calculated lines. It is available as supple- 

mentary material attached to Ref. [222] and will be incorporated 

in the next HITRAN update. 

First assignments of the strongest bands at the high- 

wavenumber boundary of the 13 CH 4 Tetradecad (5852–6200 cm 

−1 

region dominated by 2 ν 3 ) have been reported by Starikova et 

al. [195] . Differential Absorption spectra (DAS) recorded in Greno- 

ble [223] at 80 K and 296 K have been used for this analysis. For 

the 80 K spectra, about 2900 lines of 3717 observed lines were 

assigned. The theoretical model in both spectral intervals, 3750–

470 0 cm 

−1 and 5852–620 0 cm 

−1 , was based on the combined ap- 

proach [187] using ab initio predictions for line positions and in- 

tensities [224] with subsequent EH fits, which is similar to that for 

the main 

12 CH 4 isotopologue as outlined in Section 2.6.4 Supple- 

mentary materials of Ref. [195] contain a partially-assigned exper- 

imental DAS list at 80 K. For the present HITRAN2016 release, the 

assignments were extended for the 296 K list. Note that many ob- 

served absorption features in the congested spectrum could have 
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Fig. 14. Overview comparison of the HITRAN line list of 12 CH 4 above 7920 cm 

−1 

in the 2012 and 2016 editions. In this region, line parameters all have an empiri- 

cal origin: CRDS between 7920 and 8250 cm 

−1 [196] , FTS by Brown in the 8250–

9028 cm 

−1 interval [218] by Béguier et al. in the 9028–10,923 cm 

−1 interval [197] , 

and ICLAS between 11,0 0 0 and 11,500 cm 

−1 [219] . The different polyad and cor- 

responding quantum numbers, P, are indicated. (The polyad number P is equal to 

2(V 1 + V 3 ) + V 2 + V 4 , where V i are the normal mode vibrational quantum numbers). 

Fig. 15. Comparison of unassigned experimental line list of 12 CH 4 in the Tetracon- 

tad range (Béguier et al. [197] ) included in HITRAN2016 (upper panels in black) 

with variational calculations, Rey et al. [205] based on ab initio dipole moment 

[202] , and potential energy [203,204] surfaces using the line list included in the 

TheoReTS database [205] (lower panel upside down in red). 

contributions from various overlapping transitions. As the assign- 

ment criteria, the ratio R = I re-calc /{ I obs (296 K)} was used as well as 

the coincidence of J low 

obtained theoretically and via the empirical 

2T-method. Here I re-calc stands for intensities re-calculated from the 

80 K DAS list via the Boltzmann factor. In doubtful cases, but with 

consistent J low 

values, we have kept empirical line parameters. For 

big R deviations and inconsistent J low 

values, a default value E low 

= 333.3333 cm 

−1 was applied. The self- and air- line broadening 

were calculated following the method described in the GOSAT pa- 

per [211] . 

Fig. 16 , giving the overview of 13 CH 4 lines in the 2 ν3 range, 

shows that most of the strong and medium lines in the HI- 

TRAN2016 release have consistent assignments. 

An extension of this work using the approach of Ref. [216] is in 

progress for the Icosad range of 13 CH 4 [225] . 

2.6.7. CH 3 D and other isotopologues 

The parameters for this singly-deuterated methane molecule 

have not been updated for the 2016 edition. We note a recent pa- 

per by Bray et al. [226] which indicated the need for updating the 

intensities of CH 3 D in the pure rotational band. We are considering 

this work for a future update of HITRAN. 

2.6.8. Line-shape parameters for methane 

Our knowledge of pressure broadening of methane by air, N 2 , 

H 2 , He, CH 4 , and other gases remains incomplete, particularly for 

the near-infrared and for weaker transitions in all spectral regions. 

Basic coefficients of Lorentz broadening (widths, shifts, tempera- 

ture dependences) all vary as a function of the transition quan- 

tum numbers, and values obtained for the fundamental bands are 

not easily applicable to the very complicated polyads having mul- 

tiple underlying vibrational states. Available measured values for 

Lorentz pressure broadened line-shape parameters from the pre- 

vious edition of HITRAN were transferred into the new compi- 

lation, but most of the lines have been given crudely-estimated 

air- and self-broadened half widths, as described by Brown et al. 

[176] . Good theoretical models, confirmed by measurements, must 

be implemented in order to have accurate values, not the esti- 

mates used here for 99% of the present database. Since the release 

of the 2012 database, additional methane line-shape measure- 

ments have become available in several spectral regions for 12 CH 4 

[179,181,183,189,227–232] , and CH 3 D [226,233,234] , and these will 

be added in the future updates to HITRAN2016. 

The recent study of Mendonca et al. [235] illustrates the 

growing evidence that for remote-sensing applications requiring 

the highest accuracies of line parameters to model the observed 

methane spectrum, Voigt lineshapes are inadequate. It is well 

known that collisional line mixing can significantly affect absorp- 

tion spectral shapes, and line mixing cannot be neglected for ac- 

curate retrievals of atmospheric CH 4 abundance. The HITRAN2012 

database [1] had included the line-mixing parameters for CO 2 , CO 

and O 2 , however without providing guidance or tools for users to 

implement these parameters in their calculations. The new struc- 

ture of the HITRAN database [236] and the HITRAN Application 

Programming Interface (HAPI) [5] provide the potential for the 

inclusion of line-mixing parameters in the database and provide 

tools for their implementation. 

A theoretical approach proposed to model line-mixing effects 

for CH 4 by Tran et al. [ [237–239] has been successfully applied to 

calculate absorption in the ν3 , ν4 and 2 ν3 bands. The same model 

has been used to simulate the spectra in the ν2 + ν3 band as a 

test to demonstrate whether it can be applied to other vibrational 

bands. Comparisons with spectra measured under different pres- 

sure conditions [189] show that line mixing only weakly affects 

the absorption spectral line shape of this band under these pres- 

sure conditions. Therefore, more calculations for other vibrational 

bands under large pressure conditions are needed to demonstrate 

if this model can be applied to various vibrational bands. While the 

work of Tran et al. ( [239] and references therein) represents signif- 

icant progress in understanding non-Voigt line shapes in methane, 

additional laboratory studies of line mixing, speed dependence and 

narrowing are required to provide the basic parameters for future 

methane compilations in the spectral regions most utilized for re- 

mote sensing. 

2.7. O 2 (molecule 7) 

An extensive update of the HITRAN oxygen line list for the new 

edition makes use of the following significant progress on: ( 1 ) a 

self-consistent set of energy levels and line positions for the entire 

HITRAN oxygen line list; ( 2 ) lineshape, line mixing, collision in- 

duced absorption (CIA), and new speed-dependent Voigt (SDV) for- 

malism for the A-band; ( 3 ) HT profile parameters for the B- bands. 

We also added the b 1 	+ 
g (v = 3)-X 

3 	−
g (v = 0) and b 1 	+ 

g (v = 2)- 

X 

3 	−
g (v = 1) bands. 

2.7.1. Line positions and energy levels 

A self-consistent set of spectroscopic constants from an updated 

isotopically invariant Dunham fit by Yu et al. in 2014 [240] were 
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Fig. 16. Overview of assigned lines [195] in the experimental 13 CH 4 DAS list [223] included in HITRAN2016 in the 1.66-μm range. 

used to update line positions and energy levels throughout the 

entire HITRAN2012 oxygen line list, except for the so-called zero- 

frequency lines (due to Zeeman splitting of the ground state), see 

HITRAN1986 paper for details [241] . This updated Dunham fit was 

obtained by adding new microwave and infrared measurements 

[242,243] to the first global analysis of O 2 by Yu et al. in 2012 

[244] that simultaneously fits all available experimental line po- 

sitions for all the bands and isotopologues from the microwave 

to UV region. The new microwave measurements [242] include 

324 rotational transitions in the a 1 �g v = 0 and 1 states of the six 

O 2 isotopologues and helped determine two more hyperfine pa- 

rameters, the electric quadrupole interaction eQq and the nuclear 

spin-rotation interaction, C I . The new infrared work [243] reported 

1644 b 1 	+ 
g − X 3 	−

g transition frequencies for the six O 2 isotopo- 

logues and revealed a 0.2 cm 

−1 calibration error in the 17 O 

18 O 

v ′ − v ′′ = 1 − 0 Raman data of Edwards et al. [245] . It resolved 

discrepancies in the Raman data for 16 O 

17 O, 17 O 

17 O, and 

17 O 

18 O, 

and improved the vibrational parameterization of the ground elec- 

tronic state. 

A quantum number assignment error has been fixed in HI- 

TRAN2016 for 17 lines in the �N �J = PO branch of the 16 O 

16 O 

a − X(v ′ , v ′′ ) = (0 , 0) band. These lines were incorrectly labeled 

with a shift of two in N 

′′ and J ′′ in HITRAN2012, as was pointed 

out in Yu et al. [240] . 

Band-by-band comparisons of the updated line positions and 

lower state energies versus the HITRAN2012 compilation were 

performed. For all the bands in the a 1 �g − X 3 	−
g system (for 

which the data in HITRAN originate from Refs. [246 −249] , sys- 

tematic differences, smaller than experimental uncertainties, were 

found for measured lines and expected deviations were found 

for extrapolated lines. As depicted in the upper left panel of Fig. 

17 , systematic differences of 0.0 0 07 cm 

−1 were found for the 
16 O 

16 O a − X(v ′ , v ′′ ) = (0 , 0) band. Similar deviations were found 

for all other bands except the A-band ( b − X(v ′ , v ′′ ) = (0 , 0) ) of 
16 O 

16 O, 16 O 

17 O and 

16 O 

18 O, where the data originated from Refs. 

[250,251] (see discussion below). 

As shown in upper right, lower left and lower right panels of 

Fig. 17 , deviations are very small for one sub-group of the A-band 

transitions while they are large for another sub-group. The sub- 

group of transitions with small deviations belongs to the P O, P P, P Q 

branches while the other sub-group with large deviations belongs 

to the N O, R R, R Q, R S and 

T S branches. 

2.7.2. A-band region near 762 nm 

The line list for the A-band in HITRAN2012 originates from the 

data from the Long et al. [250,251] papers. Here an update of 

the principal isotopologue magnetic dipole allowed transitions is 

given that incorporates a self-consistent model of collisional line- 

shapes, collisional line mixing and collision induced absorption in 

a multispectrum fit to a wide range of experimental data sets de- 

scribed in Drouin et al. [252] (hereafter referred to as Drouin 2017). 

The lineshape chosen was the speed-dependent Voigt profile and 

effects of line mixing were introduced as a fixed W-matrix de- 

rived from the theoretical line mixing formalism of Tran, Boulet 

and Hartmann in 2006 [253] . Strong correlation was observed be- 

tween the scaled line-mixing parameterization and the collision- 

induced absorption derived as remaining non-resonant absorption. 

Correlation was also observed between the line-by-line parame- 

ters correlations in the R-branch band-head region and the scaled 

line-mixing parameterization. The self and air-broadening parame- 

ters as well as air-pressure shift parameters do not deviate signif- 

icantly from HITRAN 2012, with smooth trends that closely match 

the polynomial expressions of Long et al. that were used in the 

prior compilation. Unlike HITRAN 2012, minor erratic deviations 

of these parameters (which were minimized in the chosen scal- 

ing of the line mixing) are retained in the compilation for self- 

consistency. The self-pressure shift parameters are provided for the 

first time in this HITRAN edition, and these values differ systemat- 

ically by 0.006 cm 

−1 atm 

−1 from those given by Long et al. [251] . 

The air broadening temperature dependence is also systematically 

shifted to higher values in comparison to HITRAN 2012. The self- 

broadening temperature dependence is also provided for this band 

for the first time in HITRAN and it is even more systematically 

shifted in comparison to published values from Brown & Plymate 

[254] . Temperature dependences of the pressure-shift are also in- 

cluded in the new line-by-line parameterization; there is no prior 

parameterization for comparisons of these values. The final fit- 

ted line-by-line parameter is the ‘speed-dependence’ of the pres- 

sure broadening, which replaces the Dicke parameter determined 

in Long’s work and included in the supplemental listing of HITRAN 

2012. Qualitative comparison of these two ‘narrowing’ parameters 

shows that there is a similar m dependence in each parameter set, 

each with a more pronounced slope at m < 0 (the P-branch). Use of 

the speed-dependent Voigt allows this lineshape profile to be cast 

within the more encompassing Hartmann-Tran profile. Line-by- line 

line-mixing parameters (Rosenkranz parameters) were not fitted in 
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Fig. 17. Comparisons of the updated positions versus the HITRAN2012 compilation. The panels show differences between listed frequencies labeled by the quantum number 

J ′′ plotted vs. line intensities for the transitions for the atmospheric IR a 1 �g − X 3 	−
g system of 16 O 16 O and the atmospheric b 1 	+ 

g − X 3 	−
g system of 16 O 16 O, 16 O 18 O and 

16 O 17 O. Note that half of the b 1 	+ 
g − X 3 	−

g magnetic dipole transitions were removed from the plots for the purpose of clarity because the spin pairs were on top of each 

other. 

Drouin 2017 [252] , but rather a full W-matrix formalism based on 

theoretical work, empirically modified to improve the multispec- 

trum fit quality, was implemented. The empirical corrections that 

attenuated line mixing at high rotational excitation (see Tran and 

Hartmann, [255] ) were abandoned in favor of the removal of mix- 

ing between differing spin-states. The effects of this correction are 

clearly evident in the derived Rosenkranz parameters, which oscil- 

late between even and odd J (or m ) values when the spin-changing 

collisional mixing is allowed, but follow a smooth trend with J (or 

m ) when they are removed. Predoi-Cross et al. [256,257] provide 

fitted room-temperature Rosenkranz parameters (and other line- 

shape parameters) that agree with the parameters of Drouin 2017. 

The modified line mixing parameterization significantly alters the 

derived collision-induced absorption, with this absorption appear- 

ing narrower and stronger, with a shape and extent that conforms 

more closely to the resonant band. The collision-induced absorp- 

tion derived for air is provided separately in the corresponding sec- 

tion of the HITRAN database, see Section 4 for details. 

For the convenience of HITRAN users, two transformations have 

been applied to the line-shape/line- mixing parameterization given 

by Drouin 2017. First, given the primary usage of the oxygen 

database to model the Earth’s atmosphere, the foreign-broadening 

line-shape parameters presented in Drouin 2017 have been con- 

verted to air-broadening parameters using the binary mixing ratio 

[N 2 ]:[O 2 ] = 0.79:0.21. Second, the scaled, full-W-matrices for for- 

eign and self line mixing and the associated temperature depen- 

dence were evaluated for 1 atm of air at four ‘standard’ temper- 

atures and then composed into first order line-by-line Rosenkranz 

parameters. This representation of the line mixing is based on sim- 

ilar representations provided for the fine-structure line mixing in 

the microwave spectrum and is both easier to tabulate as well as 

more efficient to compute. We note that the multidimensional oxy- 

gen A-band cross-section table (ABSCO 5.0), now in use for the re- 

duction of OCO-2 [64] atmospheric data, utilizes the parameteri- 

zation of Drouin 2017 in its native form, and was calculated with 

the same source code as the multi-spectrum fitting program. The 

differences between the ABSCO 5.0 table and the HITRAN database 

are due to the two cosmetic modifications indicated above, as well 

as the replacement of line centers with the more precise values 

derived from the work of Yu et al. [240] described above. 

2.7.3. New addition of b 1 
∑ + 

g (v = 3) − X 3 
∑ −

g (v = 0) and b 1 
∑ + 

g 

(v = 2) − X 3 
∑ −

g ( v = 1 ) bands and merging in the UV lines for 16 O 2 

Atmospheric spectra can show where important bands are 

missing. Fig. 18 shows a high-air mass ground-based Kitt Peak 

spectrum fitted using the HITRAN 2012 line list. It is clear that 

the b 1 	+ 
9 
(v = 3) − X 3 	−

g (v = 0) band of O 2 at 0.58 μm is miss- 

ing in the compilation. The line list for this band was calculated 

and while there were data to calculate line positions [258] , no in- 

formation was available for intensities, and this atmospheric spec- 

trum was used to scale the intensities to fit the observations. We 

also note that line positions used in HITRAN2016 for this band 

differ from those in Yu et al. [240] . This is due to the fact that 

the measurements in Ref. [258] were carried out using a relatively 

high pressure of oxygen. It is accounted for in the fit here but not 

completely in Ref. [240] . Broadening and shift parameters for this 
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Fig. 18. High-air mass ground-based Kitt Peak spectrum fitted without (a) and with (b) b 1 	+ 
g (v = 3)- X 3 	−

g (v = 0) band of O 2 . 

band were estimated using the approach described in Gordon et 

al. [259] . Fig. 18 b shows that the inclusion of this band makes the 

difference and it was included into HITRAN2016. 

In a similar fashion it was discovered that it is important to in- 

clude the b 1 
∑ + 

g (v = 2) − X 3 
∑ −

g (v = 1) band (basically a hot band 

underlying the B -band). Intensities for this band were also deter- 

mined based on atmospheric spectra. 

Finally, the UV bands of oxygen are not stored separately any- 

more and one can retrieve them from www.hitran.org in the same 

manner as the other bands. 

2.7.4. B-band 

Recently Domysławska et al. [260] developed a dataset of 

the line-shape parameters for the B-band of self-broadened O 2 

(the main isotopologue), based on accurate CRDS measurements 

[261,262] . The dataset includes 49 lines from the P and R branches. 

It was observed that, at the considered level of signal-to-noise ra- 

tio, the spectra are well reproduced by the speed-dependent Voigt 

profile with quadratic speed dependence. In the near future we 

plan to incorporate these data into HITRAN within the formal- 

ism of the Hartmann-Tran profile by setting the frequency of the 

velocity-changing collisions, νVC , and the correlation parameter, η, 

to zero. 

2.8. NO (molecule 8) 

Nitric oxide is an important constituent of the terrestrial atmo- 

sphere, where it is commonly detected and quantified by its fun- 

damental IR band. The rotational spectrum plays an important role 

for the detection in diverse interstellar sources, but may also be 

used for detection in the Earth’s upper atmosphere; Müller et al. 

[263] give a brief overview with appropriate references. 

Positions and intensities for all stable NO isotopologues and for 

the first excited state in the pure rotation transition (1-1) of the 

principal isotopologue were based on Müller et al. [263] who per- 

formed a combined fit of all available rotational data together with 

heterodyne IR data of the fundamental band of the main species. 

All experimental data were carefully evaluated, a few poorly-fitting 

transition frequencies were omitted, and the uncertainties of some 

additional data were slightly adjusted as detailed in Ref. [263] . 

The 14 N 

16 O line position and intensity data consist of millime- 

ter and lower submillimeter data from Pickett et al. [264] and tun- 

able far-IR data from Varberg et al. [265] in v = 0. The 
-doubling 

transitions in v = 0 were mainly taken from Meerts and Dymanus 

[266] ; additional data were taken from Refs. [267,268] . Further 
- 

doubling transitions in v = 0 and 1 were taken from Dale et al. 

[269] and Lowe et al. [270] . Also used in the fit were the v = 1–

0 heterodyne IR data from Hinz et al. [271] and the very accurate 

data from Saupe et al. [272] . 

Millimeter and lower submillimeter data of 15 N 

16 O were con- 

tributed by Saleck et al. [273] , and tunable far-IR data by Varberg 

et al. [265] . The 
-doubling transitions were taken from Meerts 

and Dymanus [266] . Millimeter and lower submillimeter data of 

the isotopologue 14 N 

18 O were also published by Saleck et al. [273] , 

and tunable far-IR data by Müller et al. [263] . Finally, millimeter 

data of 14 N 

17 O and 

15 N 

18 O were taken from Saleck et al. [274] . 

A very accurate value of the ground-state electric dipole mo- 

ment of 14 N 

16 O was published in Ref. [268] ; a value for v = 1 

was determined in Ref. [275] . The strength of the magnetic dipole 
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transition was derived from the electron spin-rotation parameter γ
employing Curl’s relationship [276] to evaluate the g -factor of the 

respective isotopologue and in the appropriate vibrational state. 

The data set has been extended considerably by FTIR data of 
14 N 

16 O reaching high v and by FTIR data of minor isotopic species 

from Ref. [277] . This will be used for future editions of HITRAN and 

HITEMP [278] . The spectroscopic model developed in this study 

has also been used to compute g -factors for the system [279] . 

2.9. SO 2 (molecule 9) 

Since the 2008 edition of HITRAN, the air-broadening coeffi- 

cients of sulfur dioxide have been a constant, γ air = 0.1025 cm 

−1 , 

for line positions lower than 30 0 0 cm 

−1 ; with γ air = 0.1 cm 

−1 

for line positions larger than 30 0 0 cm 

−1 (see HITRAN20 08 pa- 

per [198] for details). Recently, new measurements have been 

made of the air-broadening coefficients of SO 2 from infrared 

and submillimeter-wave spectra [280,281] . When analyzing these 

data together with previously available experiments [282–285] , a 

slow decrease of the air-broadening coefficients with increasing 

( J ′′ + 0.2K a 
′′ ) lower-state quantum number combination was ob- 

served (see the report by Tan et al. [286] for details). The vibra- 

tional dependence of the broadening parameters is demonstrated 

to be very small or negligible. 

A linear extrapolation (see Eq. (1) ) up to ( J ′′ + 0.2Ka ′′ ) ≤ 62 (with 

error code 4 (10–20%)) was used, while for the transitions with 

( J ′′ + 0.2Ka ′′ ) > 62, the value corresponding to the experimental 

value with the largest ( J ′′ + 0.2Ka ′′ ) was used. 

γair = 0 . 10731 − 2 . 88311 × 10 

−4 
(
J ′′ + 0 . 2 K 

′′ 
a 

)
(1) 

A complete line-by-line database of room temperature self- 

broadening coefficients for about 1650 SO 2 transitions has been 

compiled by Tasinato et al. [287] . These data are used to update 

the self-broadening coefficients for the corresponding transitions. 

The error code has been set to 5, since we estimate the accuracy 

to be 5–6%. We also use the average values from Ref. [287] (with 

error code 4) of the same quantum numbers ( J ′′ , K a 
′′ ) for all the 

other transitions with corresponding rotational quantum numbers. 

More details about this update of air and self-broadening parame- 

ters can be found in the report by Tan et al. [286] . 

Another update to the SO 2 data is the addition of pressure 

shifts, line widths and their temperature-dependence exponents in 

H 2 , He and CO 2 environments for every HITRAN transition. This 

update is described in detail by Wilzewski et al. [4] . While shifts 

of the SO 2 lines due to H 2 , He or CO 2 were set to the default 

value of zero for every line because no reports of these parame- 

ters exist in available peer-reviewed sources, broadening parame- 

ters and their temperature exponents have been added based on 

Refs. [280,281,284,288,289] . Especially in the case of the SO 2 –CO 2 

system, the amount of available data used to construct the line list 

of broadening parameters is minimal, and future measurements 

of the SO 2 –H 2 , -He and -CO 2 systems would help to improve the 

present semi-empirical parameter sets. 

There has been significant recent progress in the computation 

of extensive, accurate theoretical line lists for both room tempera- 

ture [290,291] and hot [292] SO 2 . The intensities in these line lists 

are accurate enough to provide alternatives for missing bands of 

both the main and the minor isotopologues; this should be con- 

sidered in future updates. They can be supplemented with line po- 

sitions calculated using constants from recent works from Ulenikov 

et al. [293–297] and references therein. 

2.10. NO 2 (molecule 10) 

Unchanged. 

2.11. NH 3 (molecule 11) 

NH 3 is a very important constituent of the atmospheres of gi- 

ant planets and small, cold stars. It is also abundant in various en- 

vironments of the interstellar medium and occurs in the terrestrial 

atmosphere. The isotopologue with 

15 N can be very important for 

studying isotopic fractionation or for studying the opacity of lines 

pertaining to 14 NH 3 . 

Positions and intensities of the 15 NH 3 pure-tunneling and 

rotation-tunneling transitions were taken from the CDMS. It is 

based on rotation-tunneling transition frequencies from Belov et 

al. [298] and Winnewisser et al. [299] , on pure tunneling data from 

Kukolich [300] , in part corrected by Hougen [301] , and from Sasada 

[302] . Also included are FIR data from Urban et al. [303] and Car- 

lotti et al. [304] . Initial spectroscopic parameters were taken from a 

modified fit of 14 NH 3 data by Chen et al. [305] . Quantum chemical 

calculations and trial fits suggested that the C rotational constant 

cannot be determined reliably from these data. Therefore, its value 

was kept fixed to the 14 NH 3 value derived from Ref. [306] mod- 

ified by the 14 NH 3 / 
15 NH 3 difference calculated from energies cal- 

culated by Huang et al. [306] . The dipole moment and its first or- 

der J and K distortion corrections were taken from Tanaka et al. 

[307] . The rotation-tunneling transitions extend to J = 14 [304] , and 

the pure tunneling transitions [302] even higher in J . The predic- 

tions should show FIR accuracy at least up to J = 14, but predictions 

higher than J = 15 should be viewed with increasing caution. More- 

over, frequencies and possibly also intensities of the weak �K = 3 

transitions should be viewed with some caution. 

HITRAN2012 only contained ammonia transitions up to 

70 0 0 cm 

−1 . Recently, Barton et al. [308] analyzed Fourier Trans- 

form (FT) absorption spectra recorded at the National Solar Ob- 

servatory by C. De Bergh in 1980, providing partially-assigned lists 

of measured line positions and intensities. The present update in- 

cludes 8468 lines in the region 7400–8640 cm 

−1 [308] ; 2474 of 

these lines are fully assigned using the quantum numbers recom- 

mended by Down et al. [309] . Barton et al. [310] have also analyzed 

and partially assigned a further spectrum covering the 8800 to 

10,400 cm 

−1 region. These data were also included in HITRAN2016. 

At lower wavenumbers, comparisons between the HITRAN data 

and comprehensive variational line lists [311,312] give good agree- 

ment below 40 0 0 cm 

−1 . However, comparisons with these line 

lists suggest that the current HITRAN compilation is missing a sig- 

nificant number of lines in the 40 0 0–70 0 0 cm 

-1 region. Attempts 

to resolve this problem using a combination of available variational 

line lists referred to as BYTe [311,312] and empirical energy levels 

provided using the MARVEL procedure [313] to give a hybrid line 

list referred to as “BARVEL” proved to be inferior to HITRAN2012 

when compared with cross sections from PNNL [314] . It would ap- 

pear that further work is needed on both the computed line list 

and the MARVEL dataset in this region. Work in both these direc- 

tions is currently being undertaken and, in particular, a new high- 

accuracy ab initio potential energy surface [315] should provide a 

much better starting point for improved nuclear motion calcula- 

tions. 

Pressure-broadening coefficients and their temperature depen- 

dence exponent were calculated from the polynomial coefficients 

of Nemtchinov et al. [316] derived from the ν2 band measure- 

ments. Nemtchinov et al. suggested that the rotational dependence 

of the air- and self-broadening half width, γ air and γ self , can be 

represented using the following polynomial: 

γ 0 ( m, K ) = β0 + β1 m + β2 K + β3 m 

2 + β4 K 

2 + β5 mK (2) 

where m = | − J , J , J + 1| for the P, Q and R branches, and β i are 

the polynomial coefficients. This polynomial was used only for 

J ≤ 8 with error code 6 for both γ air and γ self , and for the other 

transitions with, J > 8 the extrapolated value corresponding to the 
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Fig. 19. Air-broadening line widths of NH 3 with different temperatures for aR(0,0), aR(4,3), aR(7,6) and aR(8,7) transitions. The temperature-dependence exponent n air is 

determined from the slope of the least-squares fits of − ln γ 0 
air 

(T ) V S. ln T . 

largest J and K was used. For instance, when J > 8 the default values 

γ air = 0.0906 cm 

−1 /atm and γ self = 0.5 cm 

−1 /atm have been used 

for all these transitions, and the error code has been set to 5 for 

both γ air and γ self . 

The temperature dependence exponents have also been mea- 

sured in the ν2 band by Nemtchinov et al. [316] but for broaden- 

ing by O 2 and N 2 separately. We note that in the literature many 

researchers determine the temperature exponent to be 

n air = 0 . 79 n N2 + 0 . 21 n O 2 (3) 

by analogy with the standard approximation 

γair = 0 . 79 γN2 + 0 . 21 γO2 (4) 

We note however that Eq. (3) and Eq. (4) contradict each other 

because the variation of the air-broadening coefficients with tem- 

perature T is given by: 

γair ( T ) 

γair 

(
T re f 

) = 

(
T re f 

T 

)n air 

(5) 

Here T ref is the reference temperature. Then we have: 

n air = −
ln γair 

(
T re f 

)
− ln γair ( T ) 

ln T re f − ln T 
, (6) 

where γ air can be defined using Eq (4) . Therefore the measured 

half widths induced by O 2 and N 2 at 200, 255 and 296 K can be 

determined from the values of n air as the slope of the least-squares 

fits of − ln γ 0 
air 

(T ) v s ln T , as shown in Fig. 19 . 

The broadening algorithm described above as well as the tem- 

perature dependence procedure is also used throughout the entire 

database for both isotopologues 14 NH 3 and 

15 NH 3 . 

Semi-empirical line widths, pressure shifts and temperature- 

dependence exponents of ammonia perturbed by H 2 , He and CO 2 

have been added to the database for the first time based on the al- 

gorithm described in Wilzewski et al. [4] . This algorithm makes use 

of the results from Refs. [316–320] (for H 2 ), Refs. [317,319–325] (for 

He) and Refs. [321,326,327] (for CO 2 ). Even though the new pa- 

rameters were constructed from a relatively large number of data- 

reporting articles, the database would profit from future studies of 

NH 3 absorption lines perturbed by H 2 , He and CO 2 for validation 

purposes as described in Ref. [4] . 

2.12. HNO 3 (molecule 12) 

For nitric acid (HNO 3 ), the three strongest absorption band sys- 

tems, namely the { ν5 , 2 ν9 }, { ν3 , ν4 } interacting bands, and the ν2 

band, are located at 11, 7.6 and 5.8 μm respectively. Although two 

times weaker than the bands observed in the two other ranges, 

the 11-μm band system is of particular atmospheric interest since 

it coincides with a rather clear atmospheric window. As the HI- 

TRAN2012 database [1] provides a reliable description of the ni- 

tric acid spectrum at 11 μm (the line list includes the ν5 and 2 ν9 

cold bands for the H 

14 N 

16 O 3 and H 

15 N 

16 O 3 isotopologues, as well 

as the ν5 + ν9 –ν9 , 3 ν9 –ν9 , ν5 + ν7 –ν7 and ν5 + ν6 –ν6 hot bands of 

H 

14 N 

16 O 3 ), this region is used for HNO 3 retrievals by numerous 

satellite or balloon-borne instruments [328–333] . 
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Table 8 

Comparison of the HNO 3 line parameters in the 7.6-μm region in the 2012 and 2016 edi- 

tions of HITRAN. 

(a) HITRAN2012 

Band N S tot (10 –18 ) νmin νmax S min (10 –23 ) S max (10 –21 ) 

ν3 21,308 25.37 1098.376 1387.849 1.037 31.33 

ν4 19,584 12.78 1229.867 1387.561 1.037 18.67 

Sum 38.15 

(b) HITRAN2016 

Band N S tot (10 –18 ) νmin νmax S min (10 –25 ) S max (10 –21 ) 

ν3 16,408 24.94 1252.010 1394.177 4.910 32.0 

ν4 18,105 9.834 1238.929 1387.081 4.020 10.7 

2 ν6 2451 0.1194 1243.465 1348.275 4.624 3.660 

ν5 + ν9 13,817 0.7163 1246.929 1390.071 2.081 3.543 

ν7 + ν8 11,125 0.7615 1246.422 1395.679 2.314 5.017 

3 ν9 13,894 1.177 1233.107 1388.497 4.582 2.378 

Sum 37.55 

ν3 + ν9 –ν9 12,106 1.408 1271.050 1394.899 5.285 1.798 

Note: N is the number of lines, νmin and νmax (cm 

–1 ) are the lower and upper ranges of 

the band, S min and S max are the smallest and largest line intensity (cm 

–1 /{molecule cm 

−2 } 

at 296 K) and S tot is the sum of the line intensities. 

However, retrievals of nitric acid at altitudes higher than 

∼35 km, where it is less abundant, require use of the stronger in- 

frared signatures at 5.8 or 7.6 μm. Because the first spectral re- 

gion overlaps rather strongly with water vapor absorption in at- 

mospheric spectra, the 7.6-μm band system is preferable. However, 

most satellite or balloon-borne instruments avoided using this lat- 

ter region up to now for HNO 3 retrievals because of the poor qual- 

ity of the available HNO 3 line positions and line intensities. 

For HNO 3 , the 7.6-μm spectral region in HITRAN2012 is limited 

to the ν3 and ν4 cold bands of the main isotopologue, H 

14 N 

16 O 3 . 

In addition, the quality of the line positions and intensities avail- 

able therein is rather poor, mainly because the theoretical model 

used at that time [334] accounted only for the interactions cou- 

pling energy levels belonging to the ν3 and ν4 bright states but 

was neglecting interactions with several dark states present in the 

same energy range. 

Therefore it was decided to update the HNO 3 line list at 7.6 μm. 

First, a complete reinvestigation of the line positions for nitric acid 

at 7.6 μm was performed [335] . In contrast to the previous analy- 

sis [334] , the new Hamiltonian model accounted properly for the 

various vibration-rotation resonances and torsional effects affecting 

the ν3 and ν4 bright states and the four dark states 2 ν6 , 3 ν9 , ν5 + 

ν9 and ν7 + ν8 . Additionally, the ν3 + ν9 –ν9 hot band was identified 

for the first time [335] . 

At the end of this first study [335] , a new list of line posi- 

tions and of preliminary line intensities was generated. This list 

included contribution from the ν3 and ν4 cold bands, the 2 ν6 , 

3 ν9 , ν5 + ν9 , ν7 + ν8 dark bands, and the ν3 + ν9 –ν9 hot band of the 

main isotopologue. The final line intensities at 7.6 μm were gen- 

erated through a calibration process during which the HNO 3 vol 

mixing ratio profiles retrieved from the “Michelson Interferome- 

ter for Passive Atmospheric Sounding” (MIPAS) limb emission ra- 

diances in the 11- and 7.6-μm domains were compared. This line 

list at 7.6 μm, which was also validated using the available labo- 

ratory information (individual line intensities and absorption cross 

sections), proved to provide an improved description of the 7.6-μm 

region absorption of nitric acid [336] . 

Table 8 compares the HNO 3 line lists at 7.6 μm given in the 

2012 and 2016 releases of HITRAN showing significant changes. Fi- 

nally, Fig. 20 compares the observed spectrum in the 7.6-μm spec- 

tral region (laboratory spectrum recorded in Giessen) to synthetic 

spectra generated using HITRAN2012 and HITRAN2016 showing the 

improvements brought by the new data as shown by the resid- 

Fig. 20. Overview of the Fourier transform spectrum recorded at high resolution 

in Giessen University in 2004 [335] and comparisons with the models performed 

using the HITRAN2012 and HITRAN2016 editions. 

uals. In conclusion, it is expected that this study should help to 

improve HNO 3 satellite retrievals by allowing measurements to be 

performed simultaneously in the 11- and 7.6-μm spectral regions. 

In the HITRAN2008 paper, the several-item roadmap for the im- 

provements to the nitric acid spectroscopy was presented. A major- 

ity of these problems have now been solved. However, the biggest 

challenge still remains, the lack of a line-by-line list for the ν1 

band of HNO 3 centered at 3551 cm 

−1 . It is a pronounced feature 

that interferes with other gases absorbing at these wavenumbers. 

Fig. 5 in the paper by Toon et al. [147] shows how the lack of 

spectroscopic parameters negatively affects retrievals from the Mk 

IV balloon observations. Low-resolution spectra of this band ex- 

ist in the PNNL database [314] but at a limited set of thermo- 

dynamic conditions, while ab initio calculations for this molecule 

[337,338] do not yet allow accurate atmospheric retrievals. 

2.13. OH (molecule 13) 

The line list for the hydroxyl radical remained unchanged. The 

recent study by Brooke et al. [339] could be considered for updat- 

ing intensities of the weak lines (this is more relevant for HITEMP 

[278] ) in the near future. 

Please cite this article as: I.E. Gordon et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy & 

Radiative Transfer (2017), http://dx.doi.org/10.1016/j.jqsrt.2017.06.038 

(a) 

1l 
C: 

"' t 1.0 

C: 

~ 
I- 0.5 

1280 1300 1320 1340 
o.5 ~ HITRAN 2016 wavenumber in cm·' 

(b) ~~ Obs-g'(~Wl 1 ldl'ilti lllll~lllljj-~tlillljil~'.1""'11'.t'llflj jl~-~!·•I 
1280 1300 1320 1340 

1360 

I 
1360 

http://dx.doi.org/10.1016/j.jqsrt.2017.06.038


30 I.E. Gordon et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 0 0 0 (2017) 1–66 

ARTICLE IN PRESS 

JID: JQSRT [m5G; August 21, 2017;14:18 ] 

2.14. HF (molecule 14) 

Transitions of HF with changes in vibrational quantum number, 

�v, larger than 10 were removed from the database along with 

transitions with �v > 8 for DF. This removal was carried out be- 

cause there were numerical issues in calculating the intensities of 

these transitions. Medvedev et al. [340] explain how the use of 

double precision in calculating overtone intensities may lead to nu- 

merical errors and that quadruple precision is needed. Additional 

numerical errors occur depending on the interpolation techniques 

used for the dipole moment functions as explained in Medvedev 

et al. [341] . 

Broadening, shifting and temperature-dependence parameters 

of HF due to the pressure of H 2 , He and CO 2 have been added to 

HITRAN for the first time. The semi-empirical procedure described 

in Wilzewski et al. [4] was developed using results from Ref. 

[342] (for H 2 ), Refs. [343–345] (for CO 2 ) and Refs. [346–348] (for 

He). To expand and validate the present parameters, more mea- 

surements are needed, while it would also be valuable to have 

more dedicated data for DF. 

2.15. HCl (molecule 15) 

The intensity issue mentioned above for HF concerning the re- 

moval of high overtones of all isotopologues was likewise applied 

to HCl (i.e. transitions with �v > 8 were removed for all four iso- 

topologues of hydrogen chloride). 

Ref. [4] describes in detail the addition of H 2 -, He- and CO 2 - 

broadening, -shifting and temperature-dependence parameters of 

HCl to the database. Semi-empirical HCl-CO 2 broadening and shift- 

ing parameters for each HITRAN transition are based on Refs. 

[345,349] and sophisticated extrapolations of these results, while 

Refs. [350,351] were used to construct HCl-He linewidths and 

shifts. For the HCl-H 2 system, the new parameters are based on 

Refs. [352–355] . In the future, measurements of the temperature- 

dependence of foreign-broadened HCl spectral lines will be very 

helpful additions to the database. 

2.16. HBr (molecule 16) 

Unchanged. 

2.17. HI (molecule 17) 

Unchanged. 

2.18. ClO (molecule 18) 

Unchanged. 

2.19. OCS (molecule 19) 

Carbonyl sulfide is the most abundant sulfur-containing species 

in the free troposphere, often monitored using optical remote sens- 

ing in the 5-μm region [356] . OCS is present in the atmosphere 

of Venus [357] . The increasing interest for the application of very 

sensitive cavity ring down spectroscopy to the in situ detection of 

trace species [358] makes the near infrared range more and more 

attractive. However, the HITRAN2012 database provided spectro- 

scopic information for OCS only up to 4200 cm 

–1 [1] . Recently, 

Fourier transform spectra of carbonyl sulfide were recorded be- 

tween 6170 and 6680 cm 

–1 and between 7700 and 8160 cm 

–1 us- 

ing a femto/OPO laser absorption source and cavity enhanced spec- 

troscopy [359] . The strongest bands observed in these two regions 

are 3 ν1 + 2 ν3 (near 6640 cm 

–1 ) and 2 ν1 + 3 ν3 (near 7812 cm 

–1 ), re- 

spectively. The line positions thus measured (with an accuracy es- 

timated to be 0.001 cm 

–1 for not-too-weak unblended lines) were 

used to update a global polyad model of carbonyl sulfide (see Ref. 

[360] and references therein). 

This global polyad model was then used to generate a list of 

line positions, assignments, lower-state energies, and relative in- 

tensities for the main isotopologue. Because quantitative inten- 

sity information could not be retrieved from the measured spec- 

tra, the predicted relative intensities had to be scaled relying on 

additional information. A scaling factor was determined for each 

of the two spectral regions by matching calculated spectra of the 

3 ν1 + 2 ν3 and 2 ν1 + 3 ν3 bands to their Fourier transform spec- 

tra, recorded previously [360] . Because predicted relative intensi- 

ties only make sense for transitions involving levels belonging to 

the same polyads, these two scaling factors could only be applied 

to bands corresponding to transitions involving upper vibrational 

levels belonging to the same polyads as the upper levels of the 

3 ν1 + 2 ν3 and 2 ν1 + 3 ν3 bands. Line intensities could therefore be 

obtained for cold bands matching this constraint, and hot bands in- 

volving variations of the vibrational quantum numbers identical to 

these cold bands (thus assuming that the vibrational dependence 

of the transition moments is negligible). Because isotopic substi- 

tution is not expected to significantly change the transition mo- 

ments, line intensities were also obtained for the same bands be- 

longing to 16 O 

12 C 

34 S, 16 O 

13 C 

32 S and 

16 O 

12 C 

33 S. All these predicted 

bands cover the ranges 6484–6650 cm 

–1 (region A) and 7728–

7821 cm 

–1 (region B). These two regions, involving a total of 3660 

predicted lines, are presented in Figs. 13 and 14 of Ref. [359] . Note 

that only lines having intensities larger than 3.0 × 10 –28 (region 

A) and 6.7 × 10 –28 (region B) cm 

–1 /(molecule cm 

–2 ) at 296 K were 

considered. These intensity thresholds are slightly lower than the 

experimental limits. The supplementary material of Ref. [359] also 

includes a list of line positions, assignments, and lower-state en- 

ergies for 3417 additional lines of 16 O 

12 C 

32 S, 16 O 

12 C 

34 S, 16 O 

13 C 

32 S 

and 

16 O 

12 C 

33 S, covering the 6200–6449 cm 

–1 and 7901–8120 cm 

–1 

ranges. Because of the constraint mentioned above, the relative in- 

tensities of these lines could not be scaled and were set to zero, 

and they were not included in HITRAN2016. 

The spectroscopic information included in the new edition of 

HITRAN is the data of regions A and B obtained as described 

above, to which 10 lines belonging to the 2 ν1 + 2 ν2 °+ 2 ν3 band of 

the 16 O 

13 C 

32 S isotopologue (between 6650 and 6660 cm 

–1 ) were 

added. The origin of this band is located near 6650.773 cm 

–1 . Re- 

lying on predictions of the global polyad model, which turned out 

to be as close as a few 10 –3 cm 

–1 to the observed positions, 17 

P and R branch lines of the 2 ν1 + 2 ν2 °+ 2 ν3 band of 16 O 

13 C 

32 S 

could be observed, their positions measured in the spectra of Ref. 

[359] and included in the global modeling to yield improved pre- 

dictions. These improved predictions are included in this edition 

of HITRAN. Note that the upper level of this band is the highest 

ever observed for 16 O 

13 C 

32 S. In the supplementary material of Ref. 

[359] , 152 pairs of upper vibrational levels have identical assign- 

ments as a result of the combined effects of heavy mixing near 

avoided crossings and the assignments of the levels being based on 

the largest coefficient of their eigenvectors. To remove these dupli- 

cate assignments, one vibrational level in each pair was manually 

reassigned through careful examination of the corresponding en- 

ergy level structures. Additionally, it was found that the line inten- 

sities provided in the supplementary material of Ref. [359] could 

be affected by the number of significant digits used when stor- 

ing intermediate results. The line intensities provided in this edi- 

tion of HITRAN correct this problem and are listed with the ap- 

propriate number of significant digits. The HITRAN line list for 

OCS contains self- and air-broadening coefficients for all the lines 

calculated using the Padé approximant proposed of Koshelev and 

Tretyakov [361] . 

H 2 -, He- and CO 2 -broadened linewidths of OCS were added to 

HITRAN for the first time based on semi-empirical models derived 
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in Wilzewski et al. [4] . The following experimental data were used 

to derive these models: Ref. [362] (for H 2 ), Refs. [362–365] (for He) 

and Ref. [366] (for CO 2 ). There are no lineshifts and temperature- 

dependence parameters due to H 2 , He or CO 2 available in the lit- 

erature. 

2.20. H 2 CO (molecule 20) 

Unchanged. 

2.21. HOCl (molecule 21) 

The ν2 band region of hypochlorous acid, HOCl, was first in- 

troduced in HITRAN2004 [3] based on the line list from Vander 

Auwera et al. [367] . It was found that 49 lines of the principal 

isotopologue of HOCl in HITRAN had an incorrect vibrational as- 

signment being attributed to the ν2 band, while in reality they are 

2 ν3 lines. Also, the quantum rotational assignment of the line at 

1237.62928 cm 

−1 was incorrect. All of the assignments are now 

fixed, based on the correct information provided in the original 

publication [367] . 

2.22. N 2 (molecule 22) 

It was found that the abundance of the 14 N 

15 N isotopologue 

was incorrectly calculated in the original release of HITRAN2012; 

this issue with the intensities has been fixed in the latest edition. 

2.23. HCN (molecule 23) 

Hydrogen cyanide is a trace atmospheric species that can result 

from biomass burning [368–370] ; its presence in the troposphere 

is being routinely monitored [371,372] . The use of HCN spectra 

for diagnostic applications in medicine are also being investigated 

[373] . HCN, and its isomer HNC (which is not yet in HITRAN), are 

important astronomical species with, for example, the recent ten- 

tative detection of HCN in the super-Earth exoplanet 55 Cancri e 

[374] . 

The spectrum of 1 H 

12 C 

14 N at wavenumbers below 3500 cm 

−1 

has been included in HITRAN for some time. Here we extend the 

data available to higher wavenumbers. These data were based on 

the semi-empirical line list generated by Barber et al. [375] as part 

of the ExoMol project [376] . For full line lists appropriate for higher 

temperatures and covering both HCN and HNC the reader should 

consult these sources directly. 

HITRAN has been updated with 

1 H 

12 C 

14 N lines for wavenum- 

bers above 3500 cm 

−1 and limited to transitions which have inten- 

sity greater than 10 −29 cm 

−1 /(molecule •cm 

−2 ); these criteria give 

a total of 55,153 lines in that spectral region. Wavenumbers for the 

majority of these lines were taken from the empirical energy levels 

of Mellau [377,378] . However, transition intensities are ones com- 

puted by Harris et al. [379] using the ab initio dipole moment and 

potential energy surface of Van Mourik et al. [380] . The Harris et 

al. c alculations are not sufficiently accurate for transition frequen- 

cies but the evidence is that the transition intensities can be con- 

sidered fairly reliable [381] . An overview of the HCN line list in 

HITRAN2016 is given in Fig. 21 . 

The air-broadening half widths were calculated using semi- 

empirical expressions derived in Yang et al. [382] . Self-broadening 

parameters were calculated using the procedure explained in the 

HITRAN2004 paper [3] , see Eq. (20) there and discussion around 

it. 

2.24. CH 3 Cl (molecule 24) 

The parameters of methyl chloride for 43,147 lines (7079 

of which are new), were calculated based on a recent analy- 

sis [383] of Fourier transform spectra in the range of 1900–

2600 cm 

−1 . The data from the supplementary file of Ref. 

[383] were used in the update. The error code 4 was given for 

line positions and the error code 5 (5–10%)- for line intensities, 

see Ref. [383] for details on uncertainties. We also recalculated the 

Einstein A coefficients for the lines which had changed intensi- 

ties. In addition, a couple of issues that have been identified in 

the 3-μm region of CH 3 Cl in HITRAN2012 were fixed. In particu- 

lar, the air-broadening temperature dependencies, n air, of the lines 

around 3 μm used to be negative while they are supposed to be 

positive. And all of the lines in the 3-μm band have a shift of 

−0.02 cm 

−1 /atm. We compared the calculated spectra from the HI- 

TRAN database with the PNNL database [314] and the results show 

that such a strong shift of the lines appears to be incorrect. There- 

fore the shifts were set to be zero and n air to be positive around 3 

μm. In a similar fashion we removed the shift of −0.02 cm 

−1 /atm 

in the ν2 + ν6 band around 5 μm. 

Both experimental measurements and calculations have been 

made of the self- and air- broadening coefficients of CH 3 Cl recently, 

allowing for a relatively sophisticated update of these parameters 

in HITRAN. The available results have been collected and evaluated 

to update the database for CH 3 Cl. The details are as follows: 

For self-broadening coefficients of CH 3 Cl: 

1. The CH 3 
35 Cl self-broadening coefficients at reference temper- 

ature 296 K for the R-branch ( �K = 0) were computed using 

a semi-empirical (SE) method described by Dudaryonok et al. 

[384] . We used these semi-empirical calculations for R-branch 

and P-branch (for all �K values) lines in all of the bands of 

the two isotopologues CH 3 
35 Cl and CH 3 

37 Cl considered in the 

database. The average value of RMS-deviations of the SE CH 3 Cl 

self-broadening coefficients from the experimental data of Ref. 

[385] is 0.0408 cm 

−1 /atm. We used the ratio of the individual 

half widths to this value to estimate the uncertainties and de- 

termine a corresponding error code. 

Only R-branch transitions for quantum number ranges of 

0 ≤J ≤ 70, 0 ≤K ≤ 20 are available from Ref. [1] . The empiri- 

cal relation enables evaluation of the P-branch and Q-branch 

broadening coefficients from those of the R-branch 

γP ( J, K ) ≈ γR ( J − 1 , K ) ≈ γQ ( J, K ) (7) 

2. Experimental results collected from the literature were applied 

to corresponding transitions with the same J and K . These ex- 

perimental values supersede the calculated ones: 

(a) Experimental results from Ref [386] . are used for the 

same isotopologue, ( J ′ ,K 

′ -J ′′ ,K 

′′ ) transitions in all of the 

bands, with the error code set to 5 (5–10%). 

(b) Experimental results from Ref [385] . are for both pure ro- 

tational ( J = 6, 31, 37, 40, 45, 50) and ν1 bands of CH 3 Cl. 

The measured self-broadening coefficients for pure rota- 

tional transitions are used for the corresponding tran- 

sitions in the database. Experimental results for the ν1 

band are used for transitions sharing the same quantum 

numbers throughout other bands. 

For air-broadening coefficients of CH 3 Cl: 

1. The air-broadening coefficients and associated temperature ex- 

ponents for both CH 3 
35 Cl and CH 3 

37 Cl ro-vibrational transitions 

of R-branches ( �K = 0) are calculated by a semi-classical (SC) 

approach [387] . The SC calculation are used for R-branch and 

P-branch (for all �K values) lines in all of the bands assuming 

γ P ( J,K ) ≈ γ R ( J −1, K ). 

2. Experimental results from Ref. [388] and Ref. [389] are used for 

the transitions sharing the same rotational quantum numbers. 
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Fig. 21. Overview of the transitions of HCN in HITRAN2016 with new bands revealed. 

Fig. 22. Comparison of the SAlTY line list [424] with the phosphine data from HITRAN2012 at room temperature; also shown are the recent results of Malathy Devi et al. 

[426] . 

For air-broadening temperature dependencies of CH 3 Cl: 

The air-broadening temperature exponents have been up- 

dated using the SC calculations of Buldyreva [387] . Only the ro- 

vibrational transitions of R-branches and P-branches were calcu- 

lated. The values for Q-branches were kept at the constant value 

of 0.70 for n P ( J,K ) ≈ n R ( J −1, K ). 

2.25. H 2 O 2 (molecule 25) 

For hydrogen peroxide, H 2 O 2 , the measurements of the air- 

broadening half widths from Refs. [390–392] were included for the 

corresponding transitions. The majority of the air-broadened coef- 

ficients in the database still have the same value of 0.1 cm 

-1 /atm 

estimated from the measurements of Malathy Devi et al. [392] . 

Currently the H 2 O 2 line list contained in HITRAN only covers 

wavelengths longer than 5 μm. PNNL [314] and recent ab initio cal- 

culations [393,394] show strong features near 2.75 μm associated 

with the OH stretch. More laboratory work is needed to obtain re- 

liable line lists in that region. 

2.26. C 2 H 2 (molecule 26) 

New bands of acetylene from the wavenumber regions 

13 − 248 cm 

–1 and 390 − 634 cm 

–1 were added using the results of 

Refs. [395–397] . The new data incorporated into HITRAN2016 are 
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based mainly on the global modeling of both line positions and in- 

tensities performed in Tomsk within the framework of the method 

of effective operators [395] . The new measurements performed by 

Jacquemart et al. [397] considerably extend the available experi- 

mental data in the 390–634 cm 

−1 region and allow an increase in 

the number of the fitted effective dipole moment (EDM) parame- 

ters responsible for the line intensities in the 13–634 cm 

−1 region. 

This extended set of EDM parameters has better extrapolation abil- 

ities compared to that published in Ref. [395] . Using the eigenfunc- 

tions of the effective Hamiltonian from Ref. [395] and the new set 

of EDM parameters, a new list of line positions and intensities was 

generated. This list was used to update the C 2 H 2 line list in the 

13 − 248 cm 

–1 and 390 − 634 cm 

–1 regions. 

Global modeling of the rovibrational energies of the bending 

vibrational states has also been performed in the Jet Propulsion 

Laboratory (JPL) [396] using an EH for the bending modes. The 

comparisons to the observed line positions showed that the JPL 

calculated line positions are slightly closer to the observations for 

the high values of the angular momentum quantum numbers than 

those derived from Ref. [395] . Thus it was decided to use JPL line 

positions (when available) for these bands. 

The line list has been completed by other parameters (self- 

and air-broadening coefficients, temperature exponents of air- 

broadening coefficients, air-shift coefficients) as described in 

Section 4 of Jacquemart et al. [398] . 

Uncertainty codes 4 (0.0 0 01 to 0.001 cm 

−1 ) for the line posi- 

tions and 6 (2–5%) for the line intensities were used in the case 

of the observed bands. For predicted bands, an uncertainty code 3 

(0.001 to 0.01 cm 

−1 ) for the line positions and 4 (10–20%) for the 

line intensities were adopted. For the JPL line positions, the uncer- 

tainty code 5 (0.0 0 0 01 to 0.0 0 01 cm 

−1 ) was used. 

The labeling V 1 V 2 V 3 V 4 � 4 � 5 J ε of the ro-vibrational states 

has been used in the list; see Jacquemart et al. [397] for details. 

In addition, it was discovered that the Q-branch in the 

ν2 + 2 ν4 + ν5 band near 2.58 μm was missing from the database. It 

is now provided based on the model of Lyulin and Perevalov [395] . 

In our effort to expand the database to spectral line param- 

eters relevant to the study of planetary atmospheres, we have 

compiled semi-empirical parameter sets of C 2 H 2 broadened and 

shifted by the pressure of H 2 , He and CO 2 together with the cor- 

responding temperature dependence of the linewidth. This update 

was described in detail in Wilzewski et al. [4] . These new pa- 

rameters were constructed from Refs. [257,399–402] for H 2 , Refs. 

[403,404] for He and Refs. [405,406] for CO 2 . 

Further studies of these line-shape parameters are important 

to improve our current update. This is especially true for the 

C 2 H 2 –CO 2 system, where almost no shift parameters and no 

temperature-dependence values have been reported in the litera- 

ture to this point. 

We note a recent study by Lyulin and Campargue [407] where 

empirical line lists for some of the NIR bands of acetylene are pro- 

vided. These will be considered for future updates of HITRAN. 

2.27. C 2 H 6 (molecule 27) 

Ethane (C 2 H 6 ) is the second most abundant hydrocarbon af- 

ter CH 4 in the stratospheres of the outer planets (see for instance 

Ref. [408] ) and Titan [409] . It therefore plays an important role 

as a tracer of atmospheric chemistry and dynamics. C 2 H 6 is a di- 

rect product of CH 4 photochemistry and is a key constituent in 

photochemical modeling. In addition to the ν9 fundamental of 

ethane, which is the strongest band seen in Titan observed in the 

10-μm terrestrial window, the weak v 4 torsional band at ∼35 μm 

(289 cm 

−1 ) has been detected on Titan by Cassini/CIRS [410] . Al- 

though the torsional band is not infrared active in the lowest order 

and hence very weak in a laboratory setting, the features near 35 

μm are seen relatively strong in the Cassini/CIRS spectrum of Ti- 

tan. This new development in the far-infrared enables astronomers 

to probe the lower altitudes of Titan’s atmosphere. 

2.27.1. 12 C 2 H 6 

Since the last update in HITRAN2012 [1] for 12 C 2 H 6 at 12 μm 

reported by Devi et al. [411,412] and at 7 μm reported by di Lauro 

et al. [413] , significant progress has been made for ethane in the 

far- and mid-infrared regions. Moazzen-Ahmadi et al. [414] stud- 

ied the features in the 35-μm region both in laboratory measure- 

ments and theoretical modeling, which included the torsional fun- 

damental v 4 , and the first torsional hot band, 2 v 4 - v 4 , of 12 C 2 H 6 

and the Q-branch of the 13 CH 3 
12 CH 3 v 6 band. Multiple sets of pure 

ethane spectra were obtained at cold temperatures down to 166 K 

at the Jet Propulsion Laboratory using a multipass absorption cell 

with 52-m path length. Starting with the earlier global analyses 

of ethane considering inter-vibrational interactions among the tor- 

sional levels of ν3 , ν9 , 3 ν4 bands [415] , the observed spectra were 

fit by adjusting independent dipole constants and the same value 

for self-broadening parameter for every transition. The observed 

spectra were reproduced to the residuals of 1% (the reader is re- 

ferred to Fig. 1 in Ref. [415] ). 

It was found that the modeling of the transition intensities re- 

quired an expansion of the dipole moment operator to higher or- 

der; this introduced Herman-Wallis like terms. The line positions 

and line intensities of the torsional band ( v 4 ) of 12 C 2 H 6 at 35 μm 

reported by Moazzen-Ahmadi et al. [414] have been adopted in 

this update. The uncertainties for line positions are set to no better 

than 0.0 0 03 cm 

−1 (HITRAN code = 4), while those of the line in- 

tensities are conservatively set to be 5 to 10% (HITRAN code = 5). 

For the pressure-broadened widths of the torsional band ( v 4 ) at 

35 μm, it should be noted that self- and N 2 -broadened widths are 

listed in this version, for which we adopted the values calculated 

by using the linear expressions for ν9 transitions reported by Devi 

et al. [411,412] , similar to what was done for C 2 H 6 in the 7-μm 

region in HITRAN2008 [198] . The uncertainties for widths are con- 

servatively set to 10-20% (HITRAN code = 4). The uncertainties for 

the temperature dependence exponents of the widths are thought 

to be 10-25% (HITRAN code = 3). 

In the near future two minor isotopologues of ethane could be 

updated in the 12 μm region; one is for the 13 C singly-enriched v 12 

band of ethane ( 13 CH 3 
12 CH 3 ) at 12.2 μm measured by Devi et al. 

[416] and the other for the singly-deuterated ethane (C 2 H 5 D) at 

12.5 μm studied by Daly et al. [417] . In particular, new studies were 

reported for 13 CH 3 
12 CH 3 in the v 12 band in the 12 μm region by 

Devi et al. [416] and in the 7 μm region by di Lauro et al. [418] for 

the v 4 , v 9 , v 10 and v 6 + v 11 bands between 1345 and 1557 cm 

−1 . 

Their intensities were reported at 130 K with partially completed 

theoretical modeling. 

2.28. PH 3 (molecule 28) 

Phosphine (PH 3 ) is a molecule of interest in astronomy, and its 

features have long been observed and identified in the spectra of 

Jupiter and Saturn ( e.g . Refs. [419–422] ). Because of its great im- 

portance in the Earth’s and other planetary atmospheres includ- 

ing the interstellar medium, PH 3 has been the subject of a large 

number of experimental and theoretical investigations. Far infrared 

(FIR) line parameters of PH 3 were included for the first time in the 

HITRAN2012 database [1] . No updates have been made for any of 

the spectral line parameters for the infrared (IR) bands of phos- 

phine since the HITRAN2008 database [198] . After the release of 

the HITRAN2012 database, there have been a few experimental and 

theoretical studies reported on phosphine [423–426] . Sousa-Silva 

et al. [423,424] generated a line list for phosphine; their room tem- 

perature line list consists of 137 million transitions among the 5.6 
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million energy levels for the ro-vibrational states up to J max = 31 

and energies up to 80 0 0 cm 

−1 . It was augmented by a more ex- 

tensive and more accurate “hot” line list capable of simulating ob- 

served spectra from astronomical bodies at higher temperatures 

( e.g . 1500 K). In the near infrared region that is important for re- 

mote sensing of the outer planets, especially Jupiter and Saturn, 

the two most extensive and comprehensive experimental measure- 

ments of phosphine to date include: ( 1 ) the line positions and in- 

tensities for the five bands (2 ν2 , ν2 + ν4 , 2 ν4 , ν1 and the ν3 ) in 

the pentad region between 1950 and 2450 cm 

−1 [426] and ( 2 ) the 

measurements of spectral line-shape parameters ( e.g ., pressure- 

broadened half widths, pressure shifts, and collisional line mixing 

coefficients) for the ν2 + ν4 , 2 ν4 , ν1 and the ν3 bands [425] . 

The measurements reported in Ref. [426] show an increase in 

the number of individual fitted intensities for the fundamental 

bands ν1 and ν3 from 20 and 50 reported in the previous labo- 

ratory measurements of Tarrago et al. [2.2. 28.11 ] to 184 and 409, 

respectively. The actual number of measured intensities in these 

bands were 337 and 829, respectively; however only the best se- 

lected lines were used in the determination of the pentad band 

strength. Positions and intensities for more than 40 0 0 individual 

transitions in the pentad were retrieved from analyses of the FTS 

spectra recorded at the National Solar Observatory (NSO) on Kitt 

Peak, and the PNNL spectra [314] . The results published in Refs. 

[425,426] included 53 A + A- doublet components that are split by 

the Coriolis interaction between the ν1 and ν3 bands, and nearly 

150 vibrationally-mixed perturbation-allowed transitions. The pre- 

dicted spectrum from the analysis, however, did not reproduce the 

experimental spectrum fully because the precisions of the mea- 

surements were better than the calculations (for example see Fig. 

9 from Ref. [426] ). To improve the calculations, a global vibra- 

tional and intensity analysis combining the pentad measurements 

[425,426] with data in the dyad and the octad regions should be 

undertaken. 

It appears that the SAlTY line list from the recent ab initio cal- 

culations [424] is in much better agreement with Ref. [426] than 

with the HITRAN2012 data. Figure 22 shows a comparison of the 

SAlTY line list [424] with the phosphine data from HITRAN2012 

[1] at room temperature; also shown are the recent results of 

Malathy Devi et al. [426] . 

Recently, Nikitin et al. [427] have reported theoretical pre- 

dictions of phosphine spectra based on ab initio dipole moment 

[428] and potential energy surfaces [429] . These calculations per- 

mitted a qualitatively correct agreement with observed data up to 

the octad range (2733–3660 cm 

−1 ). An example of the compari- 

son between these ab initio and experimental PNNL spectra [314] is 

given in Fig. 23 . The theoretical approach to these variational cal- 

culations is described in Rey et al. [430] and the corresponding line 

list and ab initio cross-sections in the range (0-70 0 0 cm 

−1 ) is avail- 

able in the TheoReTS database [205] . 

The ab initio calculations described above (especially line posi- 

tions) may not be of sufficient quality to model room-temperature 

high resolution spectra to the HITRAN standard of accuracy. How- 

ever, they are very helpful in assigning experimental spectra and 

invaluable in high-temperature simulations and will be considered 

for inclusion in a future edition of the HITEMP database [278] . 

The theoretical background and the set of programs used for 

both the energy and intensity fittings in the analysis of Malathy 

Devi et al. are described in Ref. [426] . Along with the positions 

and intensities, line-shape parameters were measured for a large 

number of transitions (over 840 Lorentz self-broadened half width 

coefficients, 620 self-shift coefficients, 185 speed dependence pa- 

rameters, and collisional line-mixing parameters for 10 A + A- dou- 

blet transitions) in the 2 ν4 , ν1 and ν3 bands, and those measure- 

ments are reported in a separate article [425] . As mentioned in 

the analysis of positions and intensities [426] , the parameters in 

Fig. 23. Comparison of experimental PNNL absorbance cross-sections [314] of PH 3 

in the dyad and pentad ranges (in black) with variational calculations Rey et al. 

[205] (upside down in red). 

the pentad region are important for the exploration of chemistry 

and dynamics on Saturn using the existing Cassini/VIMS observa- 

tions. The results reported in Refs. [425,426] (which have appropri- 

ate supplementary materials) are applicable to a variety of remote- 

sensing studies including the analyses of the near infrared data of 

Jupiter from the Juno mission and ESA’s Jupiter Icy Moons Explorer 

(JUICE). 

Creation of a line list of PH 3 in the pentad and octad regions 

is in progress and is expected to be available as an update to the 

HITRAN2016 database. 

2.29. COF 2 (molecule 29) 

Unchanged. 

2.30. SF 6 (molecule 30) 

Unchanged. 

2.31. H 2 S (molecule 31) 

Line positions for 654 transitions in the (010)–(0 0 0) band were 

updated using experimental upper- state energy levels for H 2 
32 S, 

H 2 
33 S, and H 2 

34 S isotopologues reported in Ulenikov et al. [431] . 

while the lower-state energy levels were calculated using the 

rotational constants of Flaud et al. [432] . It appeared that the 

band center of this band was off by about 0.002 cm 

−1 in HI- 

TRAN2012 while some higher- J rotational transitions were off by 

up to ∼0.055 cm 

−1 . 

In the triad region it was found that values for different pa- 

rameters for some of the lines were not transferred correctly from 

Ref. [433] to HITRAN20 0 0 [434] . This issue remained all the way 

through HITRAN2012, but has been fixed for HITRAN2016. 

Intensity distribution of some of the multiplets in the NIR re- 

gion was found to be inaccurate in the previous version in HITRAN 

for many lines where the experimental intensity for the entire 

multiplet were given to every component in the multiplet, rather 

than the intensity being divided between components. This is fixed 

in HITRAN2016. 

The air-broadening coefficients of hydrogen sulfide (H 2 S) in the 

HITRAN database were set to a constant value, γ air = 0.0740 cm 

−1 

atm 

−1 at 296 K, for most of the transitions (since HITRAN2004 [3] ) 
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Fig. 24. Experimental air-and self-broadening coefficients of H 2 S lines Left panel: Air-broadening coefficients. Waschull1994 stands for Ref. [435] , Sumpf1996- Ref. [436] , 

Ball1999- Ref. [440] , Kissel2002-Ref. [437] , Ciaffoni2008- Ref. [441] . Right panel: Self-broadening coefficients. Sumpf1996s stands for Ref. [438] . 

based on the average value of available experimental data while 

just a few half widths were based on experimental values. For HI- 

TRAN2016, a thorough survey of measurements of both the air- 

broadening and self-broadening coefficients of H 2 S has been made 

[435–438] . The report by Tan et al. [439] describes the results in 

more detail. In brief, a slow decrease of the air-(and self-) broaden- 

ing coefficients with increasing ( J 
′ ′ + 0.2 K a 

′ ′ 
) lower-state quantum 

number combination can be seen in Fig. 24 . The vibrational de- 

pendence of the broadening parameters is neglected and we use 

the semi-empirical method based on the linear fit to the available 

experimental data to compute both air- and self-broadening coef- 

ficients of H 2 S for all the isotopologues. This linear approaching 

value could only be used within the range probed by experiments. 

So for lower-state rotational quantum number J 
′ ′ 
< 12, the error 

code was set to 4 (between 10 and 20%) for both self- and air- 

broadening coefficients; for 12 ≤ J 
′ ′ ≤ 18, the error code was set to 3 

( > 20%); and for J 
′ ′ 
> 18, the value of both self- and air-broadening 

coefficients was set to the linear fit value corresponding to J 
′ ′ = 18, 

and the error code was 2 (estimate). 

2.32. HCOOH (molecule 32) 

Unchanged. 

2.33. HO 2 (molecule 33) 

The air-broadening coefficients of the hydroperoxyl radical had 

not been modified since HITRAN2004 [3] in which they were set 

to a constant, γ air = 0.107 cm 

−1 /atm (based on the measurement in 

Ref. [442] ). In the meantime, a number of different measurements 

of γ air have been performed using infrared and submillimeter- 

wave spectra [4 42–4 47] . These measurements indicate a small vi- 

brational dependence and a slow linear dependence with rota- 

tional quanta for γ air . 

The following approach was chosen for the air-broadening val- 

ues in HITRAN2016. Experimental values were used wherever 

available for all the transitions with the corresponding rotational 

quantum numbers (in all the bands). For all other lines, a linear 

extrapolation with ( J ′′ + 0.2K a 
′′ ) < 17 was used: 

γair = 0 . 1367 − 0 . 0027 ×
(
J ′′ + 0 . 2 K 

′′ 
a 

)
(8) 

For all transitions with ( J ′′ + 0.2K a 
′′ ) > 17, the value correspond- 

ing to the experimental value with the largest ( J ′′ + 0.2K a 
′′ ) was 

used. More details on the aforementioned algorithm are given in 

the report by Tan et al. [448] . 

For the self-broadening, a default estimate value of 

0.3 cm 

−1 /atm was assigned to all transitions. 

2.34. O (“molecule” 34) 

The values of line positions and lower-state energies for the O 

atom have been reverted to those given in the HITRAN1996-20 0 0 

editions [434,449] . They originate from Zink et al. [450] . The HI- 

TRAN2004 to 2012 editions used outdated values from the older 

version of the JPL catalogue [451] (downloaded in 2004), although 

the reference code mistakenly pointed to the work of Zink et al. 

The values have since been fixed in the JPL catalogue [451] (down- 

loaded in 2015), and consequently we reverted back to the more 

accurate values of Zink et al. [450] . 

2.35. ClONO 2 (molecule 35) 

Unchanged. 

2.36. NO 

+ (molecule 36) 

The fundamental band of the NO 

+ molecule (in ground- 

electronic state 1 	+ ) as well as its hot bands were introduced 

into the HITRAN1996 edition [449] and updated in 2008 [198] . As 

pointed out by López-Puertas et al. [452] and references therein, 

the molecule is an important constituent of Earth’s ionosphere. Ref. 

[452] actually used atmospheric observations to determine transi- 

tion frequencies of its fundamental band and the associated hot 

band. The identification of NO 

+ in the terrestrial atmosphere by 

rotational spectroscopy should be possible. In addition, NO 

+ was 

recently identified tentatively in the interstellar medium [453] . 

The new edition of HITRAN adds the previously omitted pure- 

rotation transitions. The current prediction of the rotational spec- 

trum corresponds to the recently created version 2 of the CDMS 

[454] . The data are based on a fit to rotational data [455] as well 

as ro-vibrational data [452,456] . The dipole moment of 0.380 D is 

from a quantum-chemical calculation [457] . 

The ground state rotational data extend to the J = 8–7 transition 

near 32 cm 

–1 . Therefore, predictions should be reliable to at least 

up to 70 cm 

–1 . The entry now also contains predictions of rota- 

tional transitions in v = 1; these are more uncertain than those in 

v = 0. 

2.37. HOBr (molecule 37) 

Unchanged. 

Please cite this article as: I.E. Gordon et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy & 

Radiative Transfer (2017), http://dx.doi.org/10.1016/j.jqsrt.2017.06.038 

0.24 

0.12 • Waschull 1994 • Waschull1994 
! • Sump/1996 0.22 !t i f • Sumpf1996 

-" Ball1999 
... Kissel2002 i -" Sumpf1996a 

0.10 * Ciaffoni2008 0.20 
* Ciaffoni2008 

! 
HITRAN2012 

I HITRAN2012 E linear fitting 0.18 linear fitting J 0.08 ~ 
E E 0.16 -----------~ 

(.) 

! 
---;;, 

~0.06 ,_!I 0.14 

0.04 
0.12 

Ya;,=0.10103-0.00437(J"+0.2K. ") 
0.10 Y,.,,=0.19852-0.00544(J"+0.2K.") 

0.02 -~~~-----~-~-~--~- ~ 
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 

J"+0.2Ka" J"+0.2Ka" 

http://dx.doi.org/10.1016/j.jqsrt.2017.06.038


36 I.E. Gordon et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 0 0 0 (2017) 1–66 

ARTICLE IN PRESS 

JID: JQSRT [m5G; August 21, 2017;14:18 ] 

2.38. C 2 H 4 (molecule 38) 

Ethylene, C 2 H 4 , is both a naturally-occurring compound and a 

tropospheric pollutant on the Earth [458] . It is also present as a 

by-product of methane photochemistry in the atmosphere of outer 

solar system bodies including Saturn [459] and Titan [409] . Opti- 

cal remote sensing of ethylene in planetary atmospheres often re- 

lies on the strongest band observed in the 10-μm spectral region, 

namely the ν7 fundamental of the main isotopologue [460] . The 

extensive work carried out in this range of the ro-vibration spec- 

trum of 12 C 2 H 4 was recently reviewed by Alkadrou et al. [461] . The 

data available in HITRAN2012 for the 10-μm region corresponds to 

the infrared active ν10 , ν7 and ν12 bands of 12 C 2 H 4 , and the in- 

frared and Raman inactive ν4 band of the same isotopologue, lo- 

cated near 826, 949, 1442 and 1026 cm 

–1 , respectively. The infor- 

mation for the ν10 , ν7 and ν4 bands dates back to the 20 0 0 edi- 

tion of HITRAN [434] . It was generated relying on the frequency 

analysis of Willaert et al. [462] , Cauuet et al. [463] , Legrand et 

al. [464] and Rusinek et al. [465] , and intensities measured for 13 

lines of the ν7 band observed in the range 940–970 cm 

–1 [466] . 

Spectroscopic information obtained for the ν12 band by Rotger et 

al. [467] was added in the 2008 edition [198] . 

A global frequency and intensity analysis of the 10-μm 

ν10 / ν7 / ν4 / ν12 band system of 12 C 2 H 4 was very recently carried 

out using the tensorial formalism developed in Dijon for X 2 Y 4 

asymmetric-top molecules and including the Coriolis interactions 

affecting the upper vibrational levels 10 1 , 7 1 , 4 1 and 12 1 [461] . 

Relying on spectroscopic information available in the literature or 

specifically retrieved from high-resolution Fourier transform in- 

frared spectra, a total of 10,757 line positions and 1645 line inten- 

sities were assigned and fitted with global root mean square devi- 

ations of 2.6 × 10 –4 cm 

–1 and 2.5%, respectively. Using the results 

of that work and information available in the literature, a HITRAN- 

formatted list of parameters for 65,776 lines belonging to the ν10 , 

ν7 , ν4 and ν12 bands of 12 C 2 H 4 and covering the 620–1525 cm 

–1 

range was generated [461] . Comparisons of experimental spectra 

with spectra calculated for the same physical conditions with this 

line list and HITRAN 2012 are presented in Figs. 5 to 7 of Ref. [461] . 

They show that the modeling provided by this line list is signifi- 

cantly better than HITRAN 2012 for the ν10 band, comparable for 

the ν7 band (and for the ν4 band hidden beneath it), and slightly 

worse for the ν12 band. 

In the line list of Ref. [461] , the vibration-rotation levels are as- 

signed using the traditional ( J, K a , K c ) labels, where J is the quan- 

tum number associated with the total angular momentum of the 

molecule, and K a and K c are associated with its projections along 

the molecular symmetry axes corresponding to the limiting prolate 

and oblate symmetric top approximations. As the tensorial formal- 

ism characterizes these levels using (J, C, α) labels (C is the ro- 

vibrational symmetry in the D 2h group, and α is a ranking number 

used to sort the energy levels within a (J, C) block), a “translation”

had to be carried out when generating the line list. It was very 

recently found that K a and K c labels were incorrect for a number 

of heavily-mixed rotational levels of the 10 1 , 7 1 and 4 1 upper vi- 

brational levels. A corrected line list was therefore generated and 

submitted for publication [468] . 

The spectroscopic information available in HITRAN for the 10- 

μm region of 12 C 2 H 4 has been updated in the following way. 

Data for the ν10 , ν7 and ν4 bands were taken from the corrected 

line list of Alkadrou et al. [468] ; however, lines having intensity 

smaller than 10 –30 cm 

–1 /(molecule cm 

–2 ) at 296 K were ignored. 

The line positions are given a HITRAN error code of 4 or 0 (0.0 0 01–

0.001 cm 

−1 and larger than 1 cm 

−1 respectively) depending on 

whether the corresponding J ′′ and K a 
′′ values are or are not in 

the ranges included in the frequency analysis of Ref. [461] . Sim- 

ilarly, an error code of 5 (5–10%) characterizes the intensities of 

lines in the ν10 and ν7 bands corresponding to transitions involv- 

ing J ′′ and K a 
′′ values in the ranges included in the intensity anal- 

ysis of Ref. [461] . The error code is set to 0 for all other line in- 

tensities. Note that errors in the degeneracies provided for the ro- 

tational levels in the 10 1 and 7 1 vibrational levels in the line lists 

of Refs. [461] and [468] are corrected here. Data for the ν12 band 

was taken from HITRAN2012; however, 187 lines having an inten- 

sity smaller than 10 –30 cm 

–1 /(molecule cm 

–2 ) at 296 K have been 

excluded, to be consistent with the information provided for the 

three other bands. For all the lines, the self-broadening coefficients 

were calculated using the empirical expressions reported in Ref. 

[460] , the air-broadening coefficients were generated as described 

in [467] , and the temperature dependence exponent n was set to 

0.76, determined as described in Ref. [461] . 

The consistency of the C 2 H 4 analyses that served for the up- 

dated line list has been confirmed by extensive variational calcu- 

lations [469] based on ab initio potential energy [470] and dipole 

moment surfaces [471] . This sort of qualitative band-shape valida- 

tion was found to be particularly important for modeling compli- 

cated intensity perturbations involving “dark” states and for check- 

ing for possible contributions of hot bands. The corresponding vari- 

ational methods are described by Rey et al. [469] , and the results 

of ab initio based calculations including cold and hot bands in the 

range 0–60 0 0 cm 

−1 can be found in the TheoReTS database [205] . 

These calculations agree well with the new HITRAN2016 line list 

and experimental PNNL spectra [314] in the 10-μm region. 

New bands of 12 C 

13 CH 4 are included in the new version of the 

database. More precisely, the new parameters which were derived 

from high-resolution Fourier transform spectra are those of the 

ν10 , ν8, ν7, ν4, ν6 bands, which absorb in the 615–1339 cm 

−1 spec- 

tral region [472,473] . Their accuracy can be estimated to be of the 

order of 0.6 × 10 −3 cm 

−1 for the positions [473] and 4% for the in- 

tensities [472] . The broadening parameters were determined in the 

same fashion as for the principal isotopologue described above. 

Fig. 25 (generated using HAPI described in Section 6 ) shows 

that the HITRAN2016 ethylene line list models experimental spec- 

tra from PNNL [314] much better than HITRAN2012. 

2.39. CH 3 OH (molecule 39) 

It was found that lower-state energies in the IR spectra of 

methanol introduced in HITRAN2004 [3] do not follow HITRAN for- 

malism in that the lowest allowed energy level should be equal to 

zero. Yet the convention was observed in the MW region. The low- 

est energy in the IR spectra was 128.1069 cm 

−1 instead of zero. 

This has been fixed now to follow the usual convention. 

2.40. CH 3 Br (molecule 40) 

Unchanged. 

2.41. CH 3 CN (molecule 41) 

Methyl cyanide, also known as acetonitrile or cyanomethane, 

a trace species in the terrestrial atmosphere [474] , has also been 

seen in comets [475] and in the atmosphere of Titan [476] , and 

is an important species in various environments of the interstel- 

lar medium. Müller et al. [479] provided a brief overview as well 

as appropriate references. The ν4 band of methyl cyanide was in- 

troduced into HITRAN2008 [198] . The data were based on a mul- 

tispectrum analysis of this band and a preliminary modeling of 

the positions and intensities [477,478] . The ν4 band is actually the 

third lowest wavelength band, with ν8 and 2 ν8 being at longer 

wavelengths. The prospects of detecting transitions of ν8 or 2 ν8 

with the James-Webb Space Telescope or other instruments in 

space or in Earth’s atmosphere are uncertain. The data are thought 
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Fig. 25. HITRAN2016 vs HITRAN2012 when simulating PNNL experimental data in the a) 700–850 cm 

−1 , b) in the 850–1100 cm 

−1 regions of ethylene spectra (1 atm., 296 K). 

to be important for the excitation or de-excitation of the v = 0 

transitions or of bands with much greater intensity, such as ν6 . 

The following update is planned in the immediate future, fol- 

lowing the HITRAN2016 release. The current line position and in- 

tensity predictions for ν8 , 2 ν8 , and 2 ν8 –ν8 are from the CDMS 

[454] ; the entries are actually combined CDMS and JPL entries. 

The predictions are based on a combined fit of rotational and ro- 

vibrational data involving states up to v 8 = 2 that was published 

by Müller et al. [479] . The analysis takes into account interactions 

among these states as well as interactions of v 8 = 2 with v 4 = 1, v 7 
= 1, and v 8 = 3 and of the last three states among each other. 

The ν8 transition frequencies were taken from Koivusaari [480] , 

and the 2 ν8 transition frequencies were from Müller et al. [479] . 

Most of the v 8 = 1 and 2 rotational data as well as some v = 0 data 

are also from Müller et al. [479] . Most of the additional ground- 

state data were published by Cazzoli and Puzzarini [481] and by 

Müller et al. [482] . Information of the K level structure in the 

ground vibrational state is based on Anttila et al. [483] and on the 

perturbations treated in Ref. [479] . Additional v 8 = 1 and 2 data 

were published by Bauer et al. [484] . Parameters describing the 

three states around 10 μm were taken mostly from the study of 

Tolonen at al. [485] . 
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Fig. 26. Comparison between an experimental spectrum [487] and calculations using the previous HITRAN2012 line list (inverted and scaled) and that constituting the 

HITRAN2016 update. 

The transition dipole moments were evaluated by Müller at al. 

[479] as were line broadening and shifting parameters which were 

transferred from the ν4 band [477] . The predictions should be reli- 

able throughout, but slight caution is recommended for the highest 

K transitions of 2 ν8 ( K = 13 and 14). 

Assignments for the ν4 band are probably complete as far as 

the available spectral recordings are concerned. However, the pre- 

liminary analysis in Ref. [478] , together with data from Ref. [479] , 

affected the ground-state parameters substantially such that a new 

modeling effort will be necessary. The analysis should be com- 

pleted well before the next HITRAN update, and further data may 

be available as well. 

2.42. CF 4 (molecule 42) 

Carbon tetrafluoride, CF 4 , is a greenhouse gas with a huge 

global warming potential. Up to now, only the ν3 fundamental 

band was present in HITRAN. However, this band represents only 

about 65% of the absorption intensity at room temperature due to 

the presence of hot bands. 

A new global fit of all CF 4 assigned lines involving the ν2 , 

ν3 and ν4 modes, as well as a separate one consisting of the 

ν1 mode have been performed, including some new experimental 

data which was recently recorded in the Groupe de Spectrométrie 

Moléculaire et Atmosphérique, Université de Reims-Champagne- 

Ardenne. This study [486] will be published soon. It has resulted 

in new reliable effective Hamiltonian parameters for 12 CF 4 , which, 

in turn, allow an improved calculation of the ν4 and ν3 fundamen- 

tal bands and, also and for the first time, of the ν3 + ν2 - ν2 hot 

band which represents about 17 % of the absorption intensity in 

this region at room temperature. The dipole moment parameters 

have also been corrected. This will be explained in detail in Ref. 

[486] . Thus, the present update completely replaces the previous 

data and includes the ν4 , ν3 and ν3 + ν2 - ν2 bands. 

Fig. 26 shows a comparison between an experimental spectrum 

from the Rennes group [487] and the calculation constituting the 

HITRAN2016 update. 

2.43. C 4 H 2 (molecule 43) 

The ν9 band region (around 220 cm 

−1 ) and the ν8 band re- 

gion (around 650 cm 

−1 ) of diacetylene, C 4 H 2 , is important in in- 

terpreting Titan [488] observations. The ν9 band region has been 

completely replaced with a new line list derived from a combined 

analysis presented in Refs. [4 88,4 89] . The updated line list provides 

new intensity for the lines already existing in the database but also 

includes numerous hot bands. The ν8 band region was updated by 

scaling the intensities of all the lines in that region by a factor of 

0.8 based on the recommendation given in Jolly et al. [489] . Finally, 

the ν6 + ν8 region (around 1200 cm 

−1 ) was introduced into HITRAN 

for the first time based on the predictions from the global analy- 

ses. This band is important in astrophysics as it has been observed 

in the atmosphere of Titan and the preplanetary nebula SMP LMC 

11 with the Spitzer Infrared Spectrograph [490] . 

2.44. HC 3 N (molecule 44) 

Unchanged. 

2.45. H 2 (molecule 45) 

Molecular hydrogen (H 2 ) is the most abundant gas in the atmo- 

sphere of gaseous giants. It was first introduced in HITRAN2012 [1] . 

The line list covered the quadrupole-allowed transitions for the H 2 

isotopologue and dipole-allowed transitions for HD in their ground 

electronic states. 

An update was made for singly-deuterated molecular hydrogen 

(HD) shortly after the release of the HITRAN2012 database. It was 

discovered by J. Mendrok (Lulea University of Technology, Kiruna, 

Sweden) that the abundance of the HD molecule was incorrectly 

calculated in the original release of HITRAN2012; this issue has 

now been fixed. The implication was that the intensities of the 

electric dipole transitions originally reported needed to be multi- 

plied by a factor of two, although it did not affect the Einstein-A 

coefficients. 
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In addition, a total of 7195 electric quadrupole transitions of the 

HD molecule have been calculated and added to the HITRAN line 

list. The calculation was carried out using the energy levels from 

the work by Pachucki and Komasa [491] and the quadrupole mo- 

ment function of Wolniewicz et al. [492] . 

In HITRAN2016, 527 transitions of H 2 that correspond to high 

vibrational overtones were removed. This was because there were 

numerical issues in calculating the intensities of these transitions. 

Refs. [340,341] explain how the use of double precision in calcu- 

lating overtone intensities may lead to numerical errors and that 

quadruple precision is needed. 

Only a default value of the broadening parameter for the Voigt 

profile was given (the same for all the lines) in HITRAN2012. In 

HITRAN2016, a complete dataset of the line-shape parameters for 

the Hartmann-Tran profile is provided for self-perturbed H 2 [6] . 

This dataset was determined from the analysis of H 2 experimen- 

tal spectra. According to the new recommendation adopted in HI- 

TRAN, these line-shape parameters are stored separately for four 

different tem perature ranges, see Ref. [6] . For the lines and con- 

ditions for which experimental spectra are not available, the line- 

shape parameters were extrapolated. In the near future we plan 

to extend HITRAN with the HT line-shape parameters for H 2 per- 

turbed by helium, which will be based on experimentally validated 

ab initio calculations [493] . 

2.46. CS (molecule 46) 

Unchanged. 

2.47. SO 3 (molecule 47) 

Sulfur trioxide (SO 3 ) occurs naturally in volcanic emissions and 

hot springs [494] . It is also a pollutant emitted by smoke stacks 

and other industrial exhausts [495] . In the terrestrial atmosphere, 

SO 3 rapidly forms sulfuric acid with its association with acid rain. 

SO 3 is a constituent in the atmosphere of Venus [496] . Recently, 

Zhang et al. [497] have indicated that measurements of the abun- 

dances of SO 3 in the lower thermosphere of Venus can answer 

important questions related to sulfur chemistry. The spectroscopic 

study of sulfur oxides can also provide insight into the history 

of the Earth’s atmosphere [498] and hence modeling of Earth-like 

planets. 

SO 3 was included for the first time in the 2012 HITRAN edi- 

tion. This entry was based on the experimental data of Maki and 

co-workers [499–502] with relative transition intensities scaled by 

the absolute values computed ab initio by Underwood et al. [503] . 

Also included were 25 pure-rotation transitions observed by Meyer 

et al. [504] for which the ab initio intensities of Underwood et al. 

[503] were used. 

SO 3 is a planar, non-polar molecule but with sufficient ro- 

tational excitation that the molecule can distort and undergo 

pure-rotational transitions. A hybrid, empirical ab initio rotational 

line list for 32 S 16 O 3 has been constructed for this edition of the 

database. For this, the ground-state rotational constants and cen- 

trifugal distortion parameters were taken from the fits to their in- 

frared spectrum given by Ref. [502] ; these were used to generate 

a set of vibrational ground-state rotational energies for J up to 85. 

To ensure that the extrapolation to high- J states is reasonable, a 

comparison was made between these energy levels and those cal- 

culated variationally by Ref. [505] ; very good agreement was found 

with a root-mean-square difference of only 0.0167 cm 

−1 for all ro- 

tational transitions involving states with J up to 85. Intensities (and 

Einstein-A coefficients) were determined using the variational cal- 

culations and an ab initio dipole moment surface [503] . The result 

is a list of 3414 pure-rotational transitions for 32 S 16 O 3 which have 

been added to the 25 microwave transitions previously included. 

No measurements or calculations for the line-shape parameters are 

available; therefore the usual default values were chosen. 

Recently Underwood et al. [506] presented a combined theoret- 

ical study of the spectrum of hot 32 S 16 O 3 . This paper provided an 

extensive new line list with 21 billion lines for hot 32 S 16 O 3 but no 

new line measurements. However, comparisons between this line 

list and the infrared absorption measurements suggest that the cal- 

culations overestimate the infrared line intensities by about 30%. 

Interestingly, this difference appears to be rather uniform. Some 

direct measurement of the 32 S 16 O 3 infrared line intensities would 

be welcome to inform future updates of the database. 

2.48. C 2 N 2 (molecule 48) 

Cyanogen is present in the atmosphere of Titan [507] . Its line 

list is now included into HITRAN for the first time based on the 

work of Fayt et al. [508] . The line list is for the ν5 band system 

around 234 cm 

−1 . 

2.49. COCl 2 (molecule 49) 

Phosgene is a long-lived, highly toxic synthetic gas that is 

widely used in pharmaceutical and polymer industries. Phosgene 

is a serious health hazard and was, in fact, used as a chemical 

weapon during World War I [509] . In addition, it has a strong 

greenhouse potential [510] . This molecule was detected in the at- 

mosphere using solar occultation spectrometry [511] , and using 

ACE-FTS [510] and MIPAS [512] retrievals. 

Phosgene is a heavy molecule with small rotational constants 

and with a number of low-lying vibrational states. As a conse- 

quence, in order to perform a detailed and extensive analysis of 

its absorption region it is necessary to record spectra at low tem- 

perature. The analysis of the 11.75-μm spectral region of phos- 

gene (which is now in HITRAN2016) was performed using a high- 

resolution Fourier transform spectrum recorded at 169 K [513] . The 

ν5 bands of the two isotopologues CO 

35 Cl 2 and CO 

35 Cl 37 Cl were 

assigned up to very high quantum numbers and the correspond- 

ing upper-state ro-vibrational levels were fitted to within the ex- 

perimental accuracy ( ∼0.0 0 02 cm 

−1 ) [513] . On the other hand, it 

was not possible to assign the corresponding hot bands, which 

were modeled using extrapolated Hamiltonian constants. As a con- 

sequence, their line positions are not accurate. As far as the line 

intensities are concerned, they were calculated [512] using sin- 

gle transition moments calibrated using the cross-section measure- 

ments from Sharpe et al. [314] . Their accuracy is estimated to be 

on the order of 5%. 

3. Absorption cross-sections 

Apart from the line-by-line spectroscopic absorption parameters 

discussed in Section 2, the HITRAN database contains information 

on absorption cross-sections where the line-by-line parameters are 

absent or incomplete. Usually this takes place for heavy poly- 

atomic molecules (with low-lying vibrational modes) which are 

difficult for detailed analysis due to the high density of the spectral 

bands/lines, broadening effects, isomerization, and overall model- 

ing complexity. Knowledge of the spectroscopy of these molecules 

is important for many purposes, including atmospheric remote 

sensing, radiative forcing calculations, detection of biomass burn- 

ing, detection of toxic industrial chemicals (TICs), climate change 

monitoring, modeling planetary atmospheres, spectral calibration, 

etc. In fact these cross-sections have been applied in radiative- 

transfer codes in good approximations to the full-blown simula- 

tions that are possible with the line-by-line parameters [514–518] . 

It is therefore important to provide these cross-sections in HITRAN 
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covering wide spectral ranges and at diverse thermodynamic con- 

ditions. 

The cross-section files are provided in the HITRAN format de- 

scribed in Ref. [449] and are further described on the official 

HITRAN website ( http://hitran.org/docs/cross- sections- definitions/ ). 

Each cross-section is given in a separate file with a header con- 

taining molecule name, chemical formula, wavenumber range, 

temperature, pressure, broadener, resolution of the experiment, 

and source. The file is completed with the value of each cross- 

section at equal intervals within the range, given in units of 

cm 

2 molecule −1 . The cross-sections come from high-resolution lab- 

oratory observations, predominantly from Fourier transform spec- 

trometers. Some of these measurements include small negative 

values, which for the HITRAN-formatted cross-sections were sub- 

stituted by zeroes; in these cases we provide all the original cross- 

sections in a supplementary “Alternate” folder, because the nega- 

tive values provide the user with some information about the noise 

level in the measurements. 

The HITRAN2012 edition of the database contained cross- 

sections for about fifty gases. For the HITRAN2016 edition we have 

increased the amount of gases almost six fold by adding new 

data in the infrared spectral range. A dedicated paper detailing 

this update will be published separately. Here we only provide 

a brief summary and overview tables. Around 220 molecules of 

atmospheric, industrial, and remote sensing interests were taken 

from the quantitative spectroscopy PNNL (Pacific Northwest Na- 

tional Laboratory) database, described in Sharpe et al. [314] . This 

compilation was updated with 55 molecules from more recent 

work of Johnson et al. [519] . Twelve of these 55 molcules are new 

to PNNL. Spectra for these molecules will be indispensable, par- 

ticularly for biomass burning detection. The PNNL database con- 

tains calibration-quality composite spectra given at atmospheric 

pressure and three temperatures (5 °C, 25 °C, and 50 °C). All 

these cross-sections were measured using the FT-IR technique with 

0.112 cm 

−1 spectral resolution on a Bruker IFS 66v/S spectrometer. 

In addition, a large portion of new molecules of atmospheric in- 

terest was taken from the 2013 review by Hodnebrog et al. [520] . 

The data presented in this review are more varied than PNNL con- 

sidering spectral resolution, while containing all the strong spec- 

tral features important in radiative forcing calculations (on Earth). 

The subset of air and nitrogen broadened cross-sections from this 

review is for 700–750 Torr pressure range and room temperature. 

Some lower-temperature data for 253 K from Highwood and Shine 

[521] were also included into HITRAN2016. Finally, more recently 

measured data were taken from Wagner and Birk for BrONO 2 

[522] , Harrison et al. for CFC-12 [523] , HCFC-22 [524] , CCl 4 [525] , 

HFC-23 [526] , HFC-134a [527] , Reed and Hodges (2015) for ethane 

[528] , as well as newly measured and revised data for many 

molecules from Refs. [529–540] . 

The summary on the new and updated compounds divided by 

categories is presented in Table 9 . These categories are imple- 

mented in HITRAN online for the convenience of users to browse 

the data. This summary does not include those compounds that 

were not updated. For instance, there are no new UV cross-sections 

that were added; therefore molecules that had only UV cross- 

sections in HITRAN2012 are not included in this table. 

In Fig. 27 we show an example of the update for the ac- 

etaldehyde molecule (CH 3 CHO). The new data were taken from 

the PNNL database [314] , while the data from HITRAN2012 were 

originally from Tereszchuk and Bernath [541] . Sixteen cross-section 

temperature-pressure sets from Ref. [541] are presented in HI- 

TRAN2012 in the 240 0–340 0 cm 

−1 spectral range. These cross- 

sections were calibrated using the PNNL data [541] and thus are 

in a good agreement with the update, in particular for absorp- 

tion between 6.0 × 10 −21 and 1.0 × 10 −19 cm 

2 molecule −1 . For this 

molecule, the new update extends the temperature range up to 

323 K and the wavenumber range from 510 to 6500 cm 

−1 . The up- 

date includes stronger features in the mid-infrared which were ab- 

sent in HITRAN2012. The data from Ref. [541] are also retained in 

the new HITRAN release. 

In Table 10 the updates to the cross-sections of the molecules 

already existing in HITRAN2012 are presented. High-quality data 

were taken from different sources for the ranges which were ei- 

ther absent or covered insufficiently. Updates for molecules that 

were not previously in HITRAN are presented in Table 11 . In both 

Table 10 and Table 11 we give total ranges for the wavenumber, 

pressure, temperature, and resolution. Each line in both of the ta- 

bles summarizes all updated cross-sections for the given molecule, 

including those relegated to the alternate folder. If the broadener is 

not provided, self-broadening is assumed. Both tables contain total 

pressure of the sample including the buffer gas (where applicable). 

While the extent of the update of the cross-sectional part of the 

database is impressive, this section of the database is by no means 

complete. In the future we plan further revision of high-quality 

data that become available in the literature and by the facilitation 

of new experiments. In the near future we also plan to extend the 

database to include planetary-relevant cross-sections that recently 

became available, including those given in Refs. [548–552] . An ex- 

tensive update of the UV cross-sections is also planned. 

4. Collision-induced absorption 

Collision-induced absorption (CIA) was first introduced into HI- 

TRAN in the 2012 edition and was largely based on the data col- 

lected in Richard et al. [586] . This section of the database is ac- 

cessible through ( www.hitran.org/cia ). CIA refers to absorption by 

transient electric dipoles induced by the interaction between col- 

liding molecules. Due to the short life-time of collision complexes, 

this typically leads to broad absorption features underlying the 

much sharper lines due to absorption by isolated molecules. As CIA 

arises from binary collision complexes, the intensity scales with 

the number densities of both the absorber and the perturber, i.e., 

with the square of the pressure at constant volume mixing ra- 

tio. To be completely explicit, the transmittance at wavenumber ν , 

τ abs-pert ( ν), is related to the collision-induced cross section tabu- 

lated in the HITRAN CIA section, k abs-pert ( ν), through 

−ln 

[
τabs −pert ( ν) 

]
= k abs −pert ( ν) ρabs ρpert L, (10) 

where ρabs and ρpert are the number densities of the absorber and 

perturber, respectively, and L is the path length. The CIA cross sec- 

tions tabulated in HITRAN are given in cm 

5 molecule −2 throughout 

[586] . 

Often the relevant perturber will be air, i.e., a 21:79 mixture 

of O 2 :N 2 (the amount of argon in the atmosphere coupled with 

its poor efficiency as a collisional partner makes this assumption 

quite reasonable). In that case, one can either add absorber-O 2 

and absorber-N 2 contributions, or equivalently use the absorber-Air 

files which are introduced in this version of HITRAN. In the latter 

case, the perturber number density equals the air number density 

given by ρpert = ρAir = ρO2 + ρN2 . 

4.1. Molecular oxygen 1.27-μm band 

The CIA data for the 1.27-μm band (corresponding to X 

3 	−
g (v 

= 0) → a 1 �g (v = 0)) of O 2 have been revised in the current re- 

lease of HITRAN. In this region, CIA is stronger whereas magnetic 

dipole lines are weaker when compared to the oxygen A-band. 

Hence, under atmospheric conditions, CIA contributes significantly 

to the absorption in the 1.27-μm band. 

All data included for this transition are taken from the experi- 

ment by Maté et al. [587] , recorded using a Fourier transform spec- 

trometer. Data recorded for pure O 2 can be found in the O 2 −O 2 
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Table 9 

Categorization for the molecules in the HITRAN2016 update. 

Category N src N mol N sets 

Halogenated alcohols and ethers 27 63 106 

Hydrochlorofluorocarbons 7 17 84 

Hydrofluorocarbons 17 32 128 

Fully fluorinated species 12 21 64 

Chlorocarbons and hydrochlorocarbons 4 23 104 

Chlorofluorocarbons 5 11 63 

Bromocarbons, hydrobromocarbons, and halons 4 12 99 

Hydrocarbons 3 30 80 

Alcohols, ethers and other oxygenated hydrocarbons 2 76 174 

Nitriles, amines and other nitrogenated hydrocarbons 3 24 62 

Sulfur-containing species 3 13 35 

Iodocarbons and hydroiodocarbons 1 3 8 

Other molecules 2 2 5 

Note : N src is the number of sources (references), N mol is the number of molecules in the category (some 

molecules can be present in more than one category), and N sets is the number of temperature-pressure sets. 

Fig. 27. Update for cross-sections for acetaldehyde. Comparison of three temperature-pressure cross-section sets from PNNL [314] (update) with corresponding data from 

HITRAN2012 (Ref. [541] ). 

file. These data have been corrected for an error in HITRAN2012, 

which accidentally contained O 2 −Air spectra. Data recorded for air 

mixtures of 21:79 O 2 :N 2 can be found in the O 2 −Air file, which is 

described above. In the previous version of HITRAN, data for such 

mixtures could be found in the O 2 −N 2 file, but these have been 

moved to the O 2 −Air file to stress that these also include O 2 −O 2 

contributions. One should not double count the O 2 −O 2 CIA by 

including both O 2 −O 2 and O 2 −Air contributions in atmospheric 

models. This has replaced the data of Smith and Newnham for this 

band [588] . The data previously provided in this band for O 2 :N 2 

mixtures contained magnetic dipole lines due to O 2 monomer ab- 

sorption. This issue has now been resolved, as the monomer lines 

have been subtracted from the present data. 

4.2. Oxygen 1.06-μm band in air 

The molecular oxygen X 

3 	−
g (v = 0) → a 1 �g (v = 1) transition 

at 1.06 μm has much weaker magnetic dipole lines than what is 

observed for the 1.27-μm band, and hence the 1.06-μm band is 

dominated by collision-induced absorption. The previous version 

of HITRAN already contained spectra for this transition, for dif- 

ferent O 2 :N 2 mixtures, measured by Smith and Newnham [588] . 

These spectra have been re-analyzed by fitting spectra for different 

mixtures to contributions of O 2 −O 2 and O 2 −N 2 collisional pairs. 

This is illustrated in Fig. 28 , which shows two spectra, for 50:50 

and 75:25 mixtures of O 2 :N 2 , both at T = 230 K. These spectra can 

be reproduced essentially using only the O 2 −O 2 contribution as 

shown. The contribution of O 2 −N 2 is smaller than the error bars 

and noise levels. The spectra determined in this way have lower 

noise levels than direct measurements for air mixtures, where the 

absorption is weaker due to the lower O 2 density. These data have 

been smoothed further and are now available in the O 2 −Air file. 

4.3. Oxygen A band in air 

Collision-induced absorption in the oxygen A band is also of 

atmospheric interest. In spite of the smaller contribution of CIA 

in this band, relative to the much stronger magnetic dipole lines, 

CIA is significant for high-accuracy measurements including air- 

mass calibration of the OCO-2 instrument [589] . The HITRAN CIA 

database already contained data for O 2 −O 2 and O 2 −N 2 from Tran 

et al. [253] , valid for temperatures between 200 and 300 K. For 
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Table 10 

Summary for the updates for compounds already existing in HITRAN2012. 

Molecule CAS ♦ Wavenumber 

range (cm 

−1 ) 

T (K) P (Torr) Resolution 

(cm 

−1 ) 

Broadener Reference 

Acetylaldehyde 75–07–0 510–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Bromine nitrate 40423–14–1 765–1320 204–293 0–141 0.014 air Wagner and Birk (2016) [522] 

Carbon 

tetrachloride 

56–23–5 700–860 207–297 7–760 0.01–0.112 air Harrison et al. JQSRT (2016) [525] , Wallington 

et al. (2016) [540] ∗

CFC-11 75–69–4 570–6500 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

CFC-113 76–13–1 620–50 0 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

CFC-114 76–14–2 60 0–50 0 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

CFC-115 76–15–3 525–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

CFC-12 75–71–8 800–1270 189–295 7–761 0.01–0.03 air Harrison AMT (2015) [523] 

CFC-13 75–72–9 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

Ethane 74–84–0 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗ , Reed et al. (2015) 

[528] 

Ethylene 74–85–1 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

Formaldehyde 50–00–0 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

Formic acid 64–18–6 540–7200 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

HCFC-123 306–83–2 40 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HCFC-124 2837–89–0 40 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HCFC-141b 1717–00–6 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HCFC142b 75–68–3 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HCFC-21 75–43–4 60 0–730 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HCFC-22 75–45–6 720–1380 190–295 7–762 0.01–0.03 air Harrison AMT (2016) [524] 

HCFC-225ca 422–56–0 650–1400 296 700 0.5 air Sihra et al. (2001) [542] 

HCFC-225cb 507–55–1 70 0–140 0 296 700 0.5 air Sihra et al. (2001) [542] 

Hexafluoroethane 76–16–4 40 0–650 0 253–323 0–760 0.01–0.5 N 2 , air, self Highwood and Shine (20 0 0) [521] , Bravo et al. 

(2010b) [543] , Sihra et al. (2001) [542] ∗ , 

Sharpe et al. (2004) [314] 

HFC-125 354–33–6 450–6500 278–323 700–760 0.112–0.5 N 2 , air Young et al. (2009b) [544] , Sharpe et al. (2004) 

[314] , Sihra et al. (2001) [542] ∗

HFC-134 359–35–3 350–6500 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Sihra et al. (2001) 

[542] ∗

HFC-134a 811–97–2 750–1600 190–296 22–761 0.015 air Harrison JQSRT (2015) [527] 

HFC-143a 420–46–2 50 0–650 0 253–323 0–760 0.03–0.5 N 2 , air, self Highwood and Shine (20 0 0) [521] ∗ , Sharpe et 

al. (2004) [314] , Sihra et al. (2001) [542] ∗ , Le 

Bris and Graham. JQSRT (2015) [535] 

HFC-152a 75–37–6 40 0–650 0 253–323 0–760 0.03–0.5 N 2 , air, self Highwood and Shine (20 0 0) [521] , Sharpe et al. 

(2004) [314] , Sihra et al. (2001) [542] ∗

HFC-32 75–10–5 40 0–650 0 253–323 0–760 0.03–0.5 N 2 , air, self Highwood and Shine (20 0 0) [521] , Sharpe et al. 

(2004) [314] , Gohar et al. (2004) [545] , 

Hydrogen peroxide 7722–84–1 510–7500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] ∗

Methylbromide 74–83–9 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] ∗ , 

Phosphine 7803–51–2 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] ∗

Propane 74–98–6 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Tetrafluoromethane 75–73–0 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , Hurley et al. (2005) 

[546] ∗

Toluene 108–88–3 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Trifluoromethylsulfur 

pentafluoride 

373–80–8 10 0–650 0 278–323 760 0.112–0.9 N 2 Nielsen et al. (2002) [547] ∗

m-Xylene 108–38–3 580–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

o-Xylene 95–47–6 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

p-Xylene 106–42–3 580–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

♦ Chemical Abstracts Service number 
∗Data from these sources can be found in the alternate folder. 

convenience, we now also provide the spectrum for O 2 −Air, ob- 

tained by combining the available O 2 −O 2 and O 2 −N 2 data. In the 

alternate folder, we now also include O 2 −Air data from Drouin 

et al. [252] obtained in a multispectrum fitting approach. Line-by- 

line parameters determined in the same multispectrum fit, are also 

available in HITRAN2016. Consistent use of both line-by-line and 

CIA data accurately reproduces the total absorption under atmo- 

spheric conditions, and has been shown to reduce systematic er- 

rors in atmospheric retrievals [252] . 

4.4. Planned update 

This update represents a small revision of the HITRAN CIA sec- 

tion, and we aim to extend the CIA section with recently measured 

and calculated spectra in the near future. This update will include 

existing and new collisional pairs. We also plan to further update 

different spectral regions for molecular oxygen. 
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5. Aerosol refractive indices 

Optical depths in the atmosphere are determined by the spa- 

tial and temporal distributions of gases, clouds, and aerosols [590] . 

Clouds and aerosols also take part in chemical reactions in both 

the liquid and solid phases [591] . The interpretation of remote- 

sensing retrievals of gaseous species is limited frequently by how 

well one can separate gaseous opacity from that of clouds and 

aerosols. Knowledge of the refractive indices of the aerosols and 

cloud particles and their size distributions is necessary in order 

to specify their optical properties. HITRAN2016 contains refractive 

indices in the visible, infrared, and millimeter spectral ranges of 

many types of cloud and aerosol particles. Table 12 lists the HI- 

TRAN2016 indices. 

As discussed by Bohren and Huffman [633] , the refractive index 

m is a function of wavelength, and has a real, m real , and imaginary, 

m imag , component: 

m = m real + i m imag (11) 

Table 11 

Summary of the new compounds for which cross-sections were added in HITRAN. 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

(E)-1-Chloro-3,3,3- 

trifluoroprop-1-ene 

102687–65–0 60 0–20 0 0 295 700 0.25 air Andersen et al. (2008) 

[553] 

(E)-HFC-1225ye 5595–10–8 650–20 0 0 296 700 0.25 air Hurley et al. (2007) [554] 

(Perfluoro-n-butyl)- 

ethylene 

19430–93–4 650–1999 298 700 0.25 air Andersen et al. (2012b) 

[555] 

(Perfluoro-n-octyl)-ethylene 21652–58–4 650–1999 298 700 0.25 air Andersen et al. (2012b) 

[555] 

(Z)-HFC-1225ye 5528–43–8 650–20 0 0 296 700 0.25 air Hurley et al. (2007) [554] 

(Z)-HFC-1234ze 29118–25–0 60 0–20 0 0 296 700 0.25 air Nilsson et al. (2009) [556] 

1,1,1,2-Tetrachloro-ethane 630–20–6 530–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,1,2,2-Tetrachloro ethane 79–34–5 530–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,1,2,2-Tetrafluoro-1,2- 

dimethoxyethane 

73287–23–7 150–1900 296 700 0.25 air Andersen et al. (2004) 

[557] 

1,1,2,2-Tetrafluoro-3- 

methoxypropane 

60598–17–6 450–3200 298 1.0 Oyaro et al. (2004) [558] 

1,1,2-Trichloro-ethane 79–00–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,1,2-Trifluoro-2- 

(trifluoromethoxy)- 

ethane 

84011–06–3 440–3200 298 1.0 Oyaro et al. (2005) [559] 

1,1-Dichloroethane 75–34–3 560–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,2-Dichloropropane 78–87–5 590–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,2-Diclorobenzene 95–50–1 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,2-Difluoro-1,2- 

dichloroethane 

431–06–1 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,3-Butadiene 106–99–0 530–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,3-Dichlorobenzene 541–73–1 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,3-Dichloropropane 142–28–9 570–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1,4-Dichlorobenzene 106–46–7 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1-Butene 25167–67–3 525–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1-Ethoxy-1,1,2,3,3,3- 

hexafluoropropane 

380–34–7 40 0–350 0 298 1.0 Oyaro et al. (2005) [559] 

1H,1H,2H,2H- 

Perfluorononan-1-ol 

755–02–2 500–2250 296 700 0.5 air Waterland et al. (2005) 

[560] 

1H,1H,2H,2H- 

Perfluoroundecan-1-ol 

87017–97–8 60 0–20 0 0 296 700 0.5 air Waterland et al. (2005) 

[560] 

1-Nonene 124–11–8 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

1-Penten-3-ol 616–25–1 550–7300 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2,2,2-trifluoro-acetaldehyde 40 0–250 0 296–298 700 0.5–1.0 air Sellevag et al. (2004a) 

[561] , Hashikawa et al. 

(2004) [562] ∗

2,2,2-Trifluoroethanol 75–89–8 70–7250 278–323 760 0.112–1.0 N 2 Sharpe et al. (2004) [314] , 

Sellevag et al. (2004b) 

[563] 

2,2,3,3,4,4,4- 

Heptafluorobutan-1-ol 

375–01–9 40 0–40 01 298 0.01 Sellevag et al. (2007) 

[533] ∗ , Bravo et al. 

(2010a) [564] 

2,2,3,3-Tetrafluoro-1- 

propanol 

76–37–9 40 0–40 0 0 298 Sellevag et al. (2007) [533] 

2,2,3,4,4,4-Hexafluoro-1- 

butanol 

382–31–0 40 0–40 0 0 298 Sellevag et al. (2007) [533] 

2,2-Difluoroethanol 359–13–7 70–4800 293 1.0 Sellevag et al. (2004b) 

[563] 

2,3-Butanedione 431–03–8 580–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2,3-Dimethylfuran 14920–89–9 510–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2,5-Dimethylfuran 625–86–5 550–70 0 0 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2,6-Dimethoxyphenol 91–10–1 580–6500 323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Carene 554–61–0 60 0–730 0 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Ethyltoluene 611–14–3 520–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

2-Fluoroethanol 371–62–0 80–7250 293–323 760 0.112–1.0 N 2 Sharpe et al. (2004) [314] , 

Sellevag et al. (2004b) 

[563] 
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Table 11 ( continued ) 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

2H, 3H-Perfluoropentane 138495–42–8 50 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

2-Hexanol 626–93–7 520–7250 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Methylfuran 534–22–5 550–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Nonanone 821–55–6 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Pentylfuran 3777–69–3 550–7300 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

2-Vinylpyridine 100–69–6 540–7300 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

3,3,3-Trifluoropropanal 460–40–2 40 0–350 0 298 1.0 Sellevag et al. (2004a) 

[561] 

3,3,4,4,5,5,6,6,7,7,7- 

Undecafluoro-heptan-1-ol 

185689–57–0 60 0–20 0 0 296 700 0.5 air Waterland et al. (2005) 

[560] 

3,3-Demethyl-2-pentanol 19781–24–9 520–7250 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

3-Carene 13466–78–9 60 0–730 0 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

3-Methoxyphenol 150–19–6 550–6500 323–333 760 0.112 N 2 Johnson et al. (2010) [519] 

3-Methylfuran 930–27–8 550–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

3-Pentanol 584–02–1 570–7250 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

4-Ethyltoluene 622–96–8 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

4-Methyl-1-pentanol 626–89–1 520–7250 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

4-Methylvaleric acid 646–07–1 50 0–730 0 323–338 760 0.112 N 2 Johnson et al. (2010) [519] 

4-Penten-1-ol 821–09–0 520–7400 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

5-Nonanol 623–93–8 580–7200 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Acetic acid 64–19–7 550–7100 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Acetol 116–09–6 435–7200 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Acrolein 107–02–8 540–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Acrylic acid 79–10–7 525–6500 323 760 0.112 N 2 Johnson et al. (2010) [519] 

Acrylonitrile 107–13–1 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Allyl trifluoroacetate 383–67–5 60 0–20 0 0 298 0.03 air Rodrigues et al. (2016) 

[538] 

alpha-Pinene (1S) (-) 7785–26–4 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Benzaldehyde 100–52–7 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Benzyl alcohol 100–51–6 550–7400 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

beta-Pinene (1S) (-) 18172–67–3 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

bis (2-Chloroethyl) ether 111–44–4 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Bromochloromethane 74–97–5 550–7100 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Bromoform 75–25–2 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

C 2 Cl 3 H 3 71–55–6 50 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

C 4 H 5 F 3 O 2 383–63–1 50 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Carbon disulfide 75–15–0 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

CF 3 CH 2 CH 2 OH 2240–88–2 40 0–40 0 0 296–298 700 0.5 air Waterland et al. (2005) 

[560] , Sellevag et al. 

(2007) [533] ∗

CFC-112 76–12–0 550–6500 278–323 760 0.112–1.0 N 2 Sharpe et al. (2004) [314] , 

Davis et al. (2016) [529] ∗

CFC-112a 76–11–9 550–6500 278–323 760 0.112–1.0 N 2 Sharpe et al. (2004) [314] , 

Davis et al. (2016) [529] ∗

CFC-113a 354–58–5 550–1730 295–296 2.7 0.01–1.0 Davis et al. (2016) [529] ∗ , 

Etminan et al. (2014) 

[530] 

CFC-114a 374–07–2 550–1397 296 1.0 Davis et al. (2016) [529] 

Chloroacetone 78–95–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Chlorobenzene 108–90–7 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Chloroethane 75–00–3 590–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Chloromethanol 657–2500 295 700 0.25 N 2 Wallington et al. (20 0 0) 

[565] 

Cineole 470–82–6 520–7300 323 760 0.112 N 2 Johnson et al. (2010) [519] 

cis-1,3-Dichloro propene 10061–01–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Crotonaldehyde 123–73–9 50 0–650 0 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Diacetone alcohol 123–42–2 520–70 0 0 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Dibromomethane 74–95–3 50 0–710 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗

Dichloromethane 75–09–2 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] , 

Wallington et al. (2016) 

[540] ∗

Dichloromethanol 657–2500 295 700 0.25 N 2 Wallington et al. (20 0 0) 

[565] 

Diethylamine 109–89–7 590–70 0 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Diiodomethane 75–11–6 530–7100 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Diisopropylamine 108–18–9 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethyl disulfide 624–92–0 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethyl ether 115–10–6 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethyl sulfate 77–78–1 525–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethyl sulfide 75–18–3 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethyl sulfoxide 67–68–5 575–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Dimethylamine 124–40–3 550–6700 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

D-Limonene 5989–27–5 520–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

DL-Limonene 138–86–3 580–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 
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Table 11 ( continued ) 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

E-C10F18 60433–12–7 650–1500 296 700 0.5 air Shine et al. (2005) [566] 

EDB 106–93–4 570–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethyl acetate 141–78–6 565–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethyl acrylate 140–88–5 580–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethyl alcohol 64–17–5 60 0–750 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethyl benzoate 93–89–0 60 0–650 0 323 760 0.112 N 2 Johnson et al. (2010) [519] 

Ethyl formate 109–94–4 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethylamine 75–04–7 60 0–70 0 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethylenediamine 107–15–3 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Ethyliodide 75–03–6 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

EVE 109–92–2 570–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Fluoroether E-1 3330–15–2 450–1450 298 1.0 Oyaro et al. (2005) [559] 

Formic acid, dimer 14523–98–9 540–7200 278–298 760 0.112 N 2 Sharpe et al. (2004) [314] 

Furan 110–00–9 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Furfural 98–01–1 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Furfuryl alcohol 98–00–0 550–7300 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Geraniol 106–24–1 60 0–650 0 323 760 0.112 N 2 Johnson et al. (2010) [519] 

Glycolaldehyde 141–46–8 570–6500 298–332 760 0.112 N 2 Johnson et al. (2010) [519] 

Glyoxal 107–22–2 60 0–650 0 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Guaiacol 90–05–1 520–7250 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Halon-1201 1511–62–2 500–1550 296 700 0.5 air Sihra et al. (2001) [542] 

Halon-1202 75–61–6 575–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Halon-1211 353–59–3 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗

Halon-1301 75–63–8 510–6500 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗

Halon-2311 151–67–7 600–1499 298 700 0.25 air Andersen et al. (2012a) 

[567] 

Halon-2402 124–73–2 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗

HCFC-121 354–14–3 560–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

HCFC-132a 354–23–4 520–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

HCFC-133a 75–88–7 50 0–710 0 278–323 7–760 0.01–1.0 N 2 , He Sharpe et al. (2004) [314] , 

McGillen et al. (2015) 

[536] ∗ , Etminan et al. 

(2014) [530] 

HCFE-235ca2 13838–16–9 600–1450 298 700 0.25 air Andersen et al. (2012a) 

[567] 

HCFE-235da2 26675–46–7 350–40 0 0 296–298 0-700 0.25–1.0 air, self Andersen et al. (2010) 

[568] , Ryan and Nielsen 

(2010) [569] ∗ , Sihra et al. 

(2001) [542] ∗

Heptafluorobutyraldehyde 375–02–0 60 0–250 0 296 700 0.5 air Hashikawa et al. (2004) 

[562] 

Hexachloro-1,3-butadiene 87–68–3 530–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Hexachlorocyclopentadiene 77–47–4 575–6500 323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Hexafluorobenzene 392–56–3 580–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Hexafluoropropene 116–15–4 10 0–650 0 278–323 740–760 0.112–1.0 N 2 , air Sharpe et al. (2004) [314] , 

Acerboni et al. (2001) 

[570] ∗

Hexyl acetate 142–92–7 580–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

HFC-1234yf 754–12–1 70 0–20 0 0 296 700 0.25 air Nielsen et al. (2007) [571] 

HFC-1345zfc 374–27–6 650–1999 298 700 0.25 air Andersen et al. (2012b) 

[555] 

HFC-143 430–66–0 350–1550 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-152 624–72–6 70 0–310 0 296 700 0.25 air Wallington et al. (1994) 

[572] 

HFC-161 353–36–6 350–1600 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-227ca 2252–84–8 400–1550 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-227ea 431–89–0 40 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Gohar et al. (2004) [545] 

HFC-23 75–46–7 950–1500 187–295 23–763 0.015 Air Harrison JQSRT (2013) 

[526] , 

HFC-236cb 677–56–5 300–1550 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-236fa 690–39–1 350–1500 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-245cb 1814–88–6 400–1550 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-245fa 460–73–1 640–1500 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-272ca 420–45–1 30 0–150 0 296 700 0.5 air Sihra et al. (2001) [542] 

HFC-329p 375–17–7 50 0–40 0 0 296 700 0.25 air Young et al. (2009b) [544] 

HFC-365mfc 406–58–6 60 0–20 0 0 296 700 0.25 air Inoue et al. (2008) [573] 

HFC-41 593–53–3 50 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗
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Table 11 ( continued ) 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

HFE-125 3822–68–2 400–1650 296 700 0.5 air Sihra et al. (2001) [542] 

HFE-143a 421–14–7 550–1550 296 700 0.5 air Sihra et al. (2001) [542] 

HFE-216 1187–93–5 850–1999 296 700 0.25 air Mashino et al. (20 0 0) [574] 

HFE-227ea 2356–62–9 40 0–320 0 298 1.0 Oyaro et al. (2005) [559] 

HFE-236ea2 57041–67–5 450–3200 298 700 0.25–1.0 air Andersen et al. (2010) 

[568] ∗ , Oyaro et al. 

(2005) [559] 

HFE-245fa2 1885–48–9 350–3200 296–298 700 0.5–1.0 air Oyaro et al. (2005) [559] ∗ , 

Sihra et al. (2001) [542] 

HFE-263fb1 460–43–5 450–3300 296–298 700 0.25–1.0 air Osterstrom et al. (2012) 

[575] , Oyaro et al. (2005) 

[559] ∗

HFE-263m1 690–22–2 450–3200 298 1.0 Oyaro et al. (2005) [559] 

HFE-329me3 428454–68–6 60 0–20 0 0 296 700 0.25 air Wallington et al. (2004) 

[576] 

HFE-338mec3 56860–85–6 50 0–350 0 296–298 700 0.25–1.0 air Wallington et al. (2004) 

[576] , Oyaro et al. (2005) 

[559] ∗

HFE-347mcc3 375–03–1 70 0–140 0 298 0.03 Bravo et al. (2010a) [564] 

HFE-347mmz1 28523–86–6 40 0–40 0 0 298 0-700 0.25–1.0 air, self Andersen et al. (2010) 

[568] , Ryan and Nielsen 

(2010) [569] ∗

HFE-356mff2 333–36–8 475–3100 296–298 700 0.5–1.0 air Oyaro et al. (2004) [558] ∗ , 

Sihra et al. (2001) [542] 

HFE-356mmz1 13171–18–1 450–3200 298 1.0 Oyaro et al. (2004) [558] 

HFE-365mcf3 378–16–5 435–3150 298 1.0 Oyaro et al. (2004) [558] 

HFE-449s1 350–1550 296–298 0-700 0.01–0.5 air, self Sihra et al. (2001) [542] ∗ , 

Bravo et al. (2010a) [564] 

HFE-7200 50 0–160 0 296–298 0-700 0.01–0.5 air, self Sihra et al. (2001) [542] ∗ , 

Bravo et al. (2010a) [564] 

HFE-7300 132182–92–4 60 0–20 0 0 298 1.0 Rodriguez et al. (2014) 

[539] 

HFE-7500 297730–93–9 60 0–20 0 0 298 1.0 Rodriguez et al. (2014) 

[539] 

HFIP 530–3400 304–362 0.1 Godin et al. (this issue) 

HFO-1243zf 677–21–4 500–1999 296–298 700 0.25–1.0 air, He Andersen et al. (2012b) 

[555] , Gonzalez et al. 

(2015) [534] ∗

(E)-HFC-1234ze 1645–83–6 650–20 0 0 296 700 0.25 air Sondergaard et al. (2007) 

[577] 

HFO-1438ezy(E) 600–1997 296 1.0 He Papadimitriou and 

Burkholder. (2016) [537] 

HG-01 188690–78–0 25–2999 296 1.0 air Myhre et al. (1999) [578] 

HG’-02 485399–46–0 150–1800 296 700 0.25 air Andersen et al. (2004) 

[557] 

HG’-03 4 85399–4 8–2 150–1800 296 700 0.25 air Andersen et al. (2004) 

[557] 

HG-10 78522–47–1 25–30 0 0 296 1.0 air Myhre et al. (1999) [578] 

HG-11 40 0–20 0 0 296 700 0.25–0.5 air Wallington et al. (2009) 

[579] , Sihra et al. (2001) 

[542] ∗

Hydrazine 302–01–2 60 0–70 0 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

i-HFE-7100 163702–08–7 300–1650 296 700 0.5 air Sihra et al. (2001) [542] 

i-HFE-7200 163702–06–5 40 0–150 0 296 700 0.5 air Sihra et al. (2001) [542] 

Isobutane 75–28–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isobutene 115–11–7 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isobutyric acid 79–31–2 530–7250 340 760 0.112 N 2 Johnson et al. (2010) [519] 

Isocyanic acid 75–13–8 50 0–70 0 0 298 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isopentane 78–78–4 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isopentyl acetate 123–92–2 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Isophorone 78–59–1 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

isoprene 78–79–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isopropylamine 75–31–0 60 0–680 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Isovaleraldehyde 590–86–3 50 0–650 0 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Limonene oxide 1195–92–2 510–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

m-Cresol 108–39–4 570–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Menthol 89–78–1 580–6500 323 760 0.112 N 2 Johnson et al. (2010) [519] 

Methyl 2-methyl butyrate 868–57–5 520–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Methyl acetoacetate 105–45–3 520–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 
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Table 11 ( continued ) 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

Methyl butyl ether 628–28–4 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl glyoxal 78–98–8 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Methyl iodide 74–88–4 50 0–690 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl isoamyl ketone 110–12–3 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl isothio-cyanate 556–61–6 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl mercaptan 74–93–1 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl methacrylate 80–62–6 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl nitrite 624–91–9 520–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl pivalate 598–98–1 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl propionate 554–12–1 530–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl propyl ketone 107–87–9 520–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Methyl salicylate 119–36–8 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Methyl vinyl ether 107–25–5 550–6500 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Methylethyl ketone 78–93–3 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Myrcene 123–35–3 520–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

N,N-Diethylformamide 617–84–5 520–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] , 

Johnson et al. (2010) 

[519] 

N,N-Diethylaniline 91–66–7 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Naphthalene 91–20–3 60 0–650 0 323 760 0.112 N 2 Sharpe et al. (2004) [314] 

n-Butane 106–97–8 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

n-Butylamine 109–73–9 60 0–70 0 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

n-C 3 F 7 OCH 3 60 0–20 0 0 295 700 0.25 N 2 Ninomiya et al. (20 0 0) 

[580] 

n-Heptane 142–82–5 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

n-Hexadecane 544–76–3 550–6500 323 760 0.112 N 2 Johnson et al. (2010) [519] 

n-Hexane 110–54–3 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

n-HFE-7100 163702–07–6 300–1520 296 700 0.5 air Sihra et al. (2001) [542] 

Nitrobenzene 98–95–3 550–6500 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Nitrogen trifluoride 7783–54–2 40 0–650 0 278–323 700–760 0.112–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Robson et al. (2006) 

[581] ∗

Nitrous acid 7782–77–6 550–6500 298 760 0.112 N 2 Sharpe et al. (2004) [314] 

Nonafluoropentanal 375–53–1 60 0–250 0 296 700 0.5 air Hashikawa et al. (2004) 

[562] 

n-Pentadecane 629–62–9 570–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Octane 111–65–9 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Octanoic acid 124–07–2 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

o-Toluidine 95–53–4 550–7300 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Pentafluoropropionaldehyde 

422–06–0 60 0–250 0 296 700 0.5 air Hashikawa et al. (2004) 

[562] 

Pentane 109–66–0 570–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Perfluoro-2-methyl-3- 

pentanone 

756–13–8 450–20 0 0 298 1.0 air D’Anna et al. (2005) [582] 

Perfluorobut-1-ene 357–26–6 60 0–20 0 0 296 700 0.25 N 2 Young et al. (2009a) [583] 

Perfluorobuta-1,3-diene 685–63–2 10 0–260 0 293 740 1.0 air Acerboni et al. (2001) [570] 

Perfluorobutane 355–25–9 450–6500 278–323 700–760 0.01–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Bravo et al. (2010b) 

[543] ∗

Perfluoropentane 678–26–2 50 0–650 0 278–323 0-760 0.01–0.112 N 2 , air, self Sharpe et al. (2004) [314] , 

Bravo et al. (2010b) [543] 

PFC-1114 116–14–3 10 0–260 0 293 740 1.0 air Acerboni et al. (2001) [570] 

PFC-218 76–19–7 50 0–650 0 278–323 700–760 0.01–0.5 N 2 , air Sharpe et al. (2004) [314] , 

Sihra et al. (2001) [542] ∗ , 

Bravo et al. (2010b) 

[543] ∗

PFC-318 115–25–3 550–6500 253–323 0–760 0.03-0.112 N 2, self Highwood and Shine 

(20 0 0) [521] , Sharpe et 

al. (2004) [314] 

PFC–51–14 355–42–0 70 0–140 0 297 0.01 Bravo et al. (2010b) [543] 

PFC–71–18 70 0–140 0 297 0.01 Bravo et al. (2010b) [543] 

PFC–91–18 306–94–5 0–20 0 0 296 700 0.5 air Shine et al. (2005) [566] 

PFPMIE 1309353–34–1 60 0–150 0 296 700 0.25 air Young et al. (2006) [584] 

PFPO 422–05–9 490–40 0 0 298–362 0.1 Sellevag et al. (2007) 

[533] ∗ , Godin et al. 

(2017) [532] 

PFTBA 311–89–7 550–20 0 0 298–344 0.1 Godin et al. (2016) [531] 

Phenol 108–95–2 550–7300 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Phosgene 75–44–5 535–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Piperidine 110–89–4 510–6700 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Propionaldehyde 123–38–6 520–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Propylene carbonate 108–32–7 60 0–650 0 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Propylenimine 75–55–8 60 0–670 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

R124A 354–25–6 525–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 
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Table 11 ( continued ) 

Molecule CAS Wavenumber 

range, cm 

−1 

T, K P,Torr Resolution, cm 

−1 Broadener Reference 

R132A 471–43–2 510–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

R141 430–57–9 550–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

sec-Amylamine 625–30–9 540–6900 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Styrene (monomer) 100–42–5 60 0–650 0 298–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Sulfuryl fluoride 2699–79–8 50 0–650 0 278–323 700–760 0.112–0.25 N 2 , air Sharpe et al. (2004) [314] , 

Andersen et al. (2009) 

[585] ∗

TE-6 25291–17–2 650–1999 298 700 0.25 air Andersen et al. (2012b) 

[555] 

Tetrachloroethylene 127–18–4 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

trans-1,2-Dichloroethene 156–60–5 540–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

trans-1,3-Dichloropropene 10061–02–6 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Trichloroethylene 79–01–6 595–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Trichloromethane 67–66–3 580–7200 295–323 700–760 0.01–0.25 N 2 , self Highwood and Shine 

(20 0 0) [521] , Sharpe et 

al. (2004) [314] , 

Wallington et al. (2016) 

[540] ∗

Trichloromethanol 657–2500 295 700 0.25 N 2 Wallington et al. (20 0 0) 

[565] 

Triethylamine 121–44–8 575–7100 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Trifluoroacetic acid 76–05–1 540–7050 298 760 0.112 N 2 Sharpe et al. (2004) [314] 

Trimethylamine 75–50–3 60 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Valeraldehyde 110–62–3 60 0–650 0 278–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Valeric acid 109–52–4 520–7100 340 760 0.112 N 2 Johnson et al. (2010) [519] 

Vinyl chloride 75–01–4 540–6500 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Vinyl fluoride 75–02–5 50 0–650 0 278–323 760 0.112 N 2 Sharpe et al. (2004) [314] 

Vinyl toluene 100–80–1 550–6500 298–323 760 0.112 N 2 Johnson et al. (2010) [519] 

Vinyl trifluoroacetate 433–28–3 60 0–20 0 0 298 0.03 air Rodrigues et al. (2016) 

[538] 

Z-C10F18 60433–11–6 650–1500 296 700 0.5 air Shine et al. (2005) [566] 

∗Data from these sources can be found in the alternate folder. 

Fig. 28. Raw experimental CIA data for the oxygen 1.06-μm band at T = 230 K for 

50:50 and 75:25 O 2 :N 2 mixtures, and the contributions of O 2 −O 2 and O 2 −N 2 de- 

termined from these data. For readability in gray scale, the legend is ordered verti- 

cally according to the peak intensity. 

A plane light wave of wavelength λ is attenuated along the 

propagation x axis according to 

E = E 0 exp(−2 πm imag x /λ) ex p(i2 πm real x /λ − i2 πct /λ) , (12) 

with time t and the speed of light c. The imaginary refractive in- 

dex m imag determines the amount of light absorption in a medium, 

attenuating the light intensity by exp( −4 πm imag x/ λ) along a path 

of distance x. 

New HITRAN2016 indices include refractive indices associated 

with exoplanet atmospheres. Indices (see Table 12 ) of materi- 

als which condense out at temperatures from 1725 K (e.g. SiO 2 ) 

to 700 K (e.g. ZnS) include most of the condensates tabulated 

Fig. 29. Comparison of the real and imaginary indices of ZnS and TiO 2 from 1 to 

20 μm. Since particle extinction spectra in the infrared have a wavelength depen- 

dence which is similar to the wavelength dependence of the imaginary index, the 

extinction spectra of ZnS and TiO 2 particles will be very different. 

by Wakeford and Sing [634] , who calculated transmission spec- 

tral properties of clouds for hot-Jupiter exoplanets. Many of the 

indices have been kindly provided to HITRAN2016 by Harrald 

Mutschke of the Friedrich Schiller University Jena. Additional in- 

dices of materials (e.g. Mg spinels with a variety of impurities) 

not tabulated in Table 12 can be downloaded from the exten- 

sive Jena web site ( http://www.astro.uni-jena.de/Laboratory/OCDB/ 

index.html ). An example of the new indices is presented in Fig. 29 , 

which displays the real and imaginary indices of ZnS and TiO 2 , two 

possible exoplanet particle compositions. 
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Table 12 

Refractive indices included in HITRAN2016. 

Compound Measurement Specifics Reference 

Water 27 °C, 10–50 0 0 cm 

−1 [592] 

Water 0.67–2.5 μm [593] 

Ice 266 K , 0.04 μm–2 m [594] 

Ice 0.67–2.5 μm [593] 

Water, ice, sodium chloride, sea 

salt, water soluble aerosol, 

ammonium sulfate, 

carbonaceous aerosol, 

volcanic dust, sulfuric acid, 

meteoric dust, quartz, 

hematite, sand 

Room temperature, 0.2–40 μm [595] 

Sulfuric acid (H 2 SO 4 /H 2 O) Room temperature, 25–96% H 2 SO 4 [596] 

Sulfuric acid (H 2 SO 4 /H 2 O) Room temperature, 75 and 90% H 2 SO 4 [597] 

Sulfuric acid (H 2 SO 4 /H 2 O) 215 K, 499–6996 cm 

−1 [598] 

Sulfuric acid (H 2 SO 4 /H 2 O) 20 0–30 0 K, 825–470 0 cm 

−1 [599] 

Sulfuric acid (H 2 SO 4 /H 2 O) 213–293 K, 432–5028 cm 

−1 [600] 

Nitric acid (H 2 SO 4 /HNO 3 ) Room temperature, 250–2987 cm 

−1 [601] 

Nitric acid (H 2 SO 4 /HNO 3 ) 220 K, 754–4700 cm 

−1 [602] 

Nitric acid (H 2 SO 4 /HNO 3 ) 213–293 K, 432–5028 cm 

−1 [600] 

Amorphous nitric acid (NAM, 

NAD, NAT) 

153 K, 482–70 0 0 cm 

−1 [603] 

NAM 179 K, 482–6002 cm 

−1 [603] 

NAD 184 K, 482–6981 cm 

−1 [603] 

NAD 160–190 K, 700–4700 cm 

−1 [604] 

αNAT 181 K, 482–6989 cm 

−1 [603] 

βNAT 196 K, 482–6364 cm 

−1 [603] 

NAT 160 K, 711–4004 cm 

−1 [605] 

Burning vegetation 525–50 0 0 cm 

−1 [606] 

Burning vegetation 0.35–1.5 μm [607] 

Carbon flame 0.4–0.7 μm, 25–600 °C [608] 

Flame soot 0.2–38 μm [609] 

Diesel soot 0.45–10 μm [610] 

Brown carbon 0.2–1.2 μm [611] 

Organic acids (Oxalic, malonic, 

succinic, pinonic, pyruvic, 

phthalic) 

0.25–1.1 μm [612] 

Organic haze 0.525 nm [613] 

SOA (proxy) 0.525 nm [614] 

Minerals (clay, illite, kaolin, 

montmorillonite) 

2.5–200 μm [610] 

Minerals (granite, 

montmorillonite) 

5–40 μm [615] 

Saharan dust 0.30–0.95 μm [616] 

Saharan dust 0.35–0.65 μm [617] 

Volcanic ash 0.45–25 μm [618] 

SiO 2 (amorphous) 6.6-487 m, 10–300 K [619] 

SiO 2 (crystalline) 6.25 μm–10 mm, 300–928 K [620] 

Al 2 O 3 7.8–200 μm [621] 

FeO 0.2–500 μm [622] 

CaTiO 3 (Perovskite) 2.0–500 μm [623] 

Fe 2 O 3 0.1–10 0 0 μm [624] 

Fe 2 SiO 4 (Fayalite) 0.4–10 μm [625] 

Fe 2 SiO 4 (Fayalite) 2–10 mm [626] 

MgAl 2 O 4 (annealed) 1.6–6825 μm [627] 

MgAl 2 O 4 (natural) 2.0 μm–10 mm [627] 

Mg 2 SiO 4 0.19–948 μm [628] 

MgSiO 3 0.2-500 μm [628] 

TiO 2 (Rutile) 0.47–36.2 μm [629] 

TiO 2 (Anatase) 2.0–5843 μm [629] 

TiO 2 (Brookite) 2.0–5843 μm [630] 

KCl 0.22–166 μm [630] 

ZnS 0.22–166 μm [630] 

Titan Tholins 0.02–920 μm [631] 

Titan aerosol 0.2–1 μm [632] 

HITRAN2016 extends the HITRAN-RI program [635] that re- 

sides on the HITRAN website by including the exoplanet indices. 

HITRAN-RI is written in the IDL (Interactive Design Language) 

and Fortran 90 programming languages, and applies the Bohren- 

Huffman [633] Mie code. The user specifies in a user-edited ASCII 

file the particle composition (refractive index), wavelength range, 

and log-normal particle size distribution. The program then cal- 

culates extinction, scattering, absorption, single scattering albedo, 

asymmetry, and backscattering spectra of the cloud or aerosol par- 

ticle. Provision is provided to generate output ASCII files of the 

inputs and spectra. The IDL version of HITRAN-RI provides out- 

put postscript files. Other special program features allow the user 

to compare two sets of refractive indices, and to calculate spec- 

tra for multiple-component aerosols. As an instructional aid, test 

cases can be run. PDF versions of the original reference papers are 

contained in a subdirectory, while the refractive indices are stored 
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in subdirectories in ASCII and NetCDF formats. The user can use 

the ASCII files to quickly look up the real and imaginary indices at 

a specific wavelength, while the HITRAN-RI program accesses the 

netCDF files. HITRAN-RI allows the user to read in user-specified 

refractive indices. The source code of HITRAN-RI can also be mod- 

ified and added to by the user. 

6. Global data and software 

6.1. Database structure and interface ( www.hitran.org) 

Since June 2015, users have been able to access the HITRAN 

line-by-line data not only by downloading them in the tradi- 

tional ASCII 160-character (.par) format from the ftp site, but 

also through the easy-to-use interface HITRAN online, available at 

www.hitran.org . Cross sections can also be accessed through this 

dynamic interface, while CIA and aerosols sections of the database 

are also accessible, though so far only as static files. This new tool 

(described in Hill et al. [2] ) allows custom filtering and selection 

of molecules and their isotopologues in the wavenumber region of 

interest. The default output format is still .par, but users are given 

an opportunity to create their own, customized output formats, in- 

cluding the HDF5 format widely used by NASA scientists. The flexi- 

bility of the formats is achieved due to the fact that the database is 

cast into a relational format [236] : it is now a compilation of tables 

of parameters and metadata that are interconnected and search- 

able using Structured Query Language (SQL) (see Refs. [2] and 

[236] for details). This new flexible database format offers many 

advantages over the static fixed-width ASCII files. Indeed, we have 

now introduced non-Voigt line shapes [6] , broadening parameters 

by perturbing gases other than air or self [4] , and other parame- 

ters that are important for accurate atmospheric retrievals. Other 

advantages of the new structure include allowing more significant 

figures (for instance, important for line positions of the MW tran- 

sitions) and checks on data integrity. Further advantages include 

immediate access to the references for every parameter (including 

the automatic generation of bibliography in both HTML and BibTeX 

format), generation of interactive plots of retrieved line-by-line 

and cross-section data (with full features such as zoom, etc.), and 

more-detailed filtering (such as by individual vibrational bands), 

etc. 

HITRAN online has received a warm welcome from the commu- 

nity, with over 6200 researchers registered with it (as of mid-June 

2017). The rate of new users signing up on www.hitran.org has not 

dropped below 50 per week. Extensive documentation regarding 

the definition and use of HITRAN parameters is now directly ac- 

cessible on the website. 

There are a few new features that have been introduced to the 

HITRAN online interface since its original release. First, in order to 

make the selection of several dozen new special parameters less 

cumbersome, we “bundled” the parameters associated with se- 

lected line profiles. In the example shown in Fig. 30 one can see 

how the Hartmann-Tran profile can be selected. 

6.2. HITRAN application programming interface (HAPI) 

The HITRAN Application Programming Interface (HAPI) is a free 

open source Python module (library) which provides a set of 

tools for working with structured spectroscopic data from differ- 

ent sources. It is described in detail in Ref. [5] . Here we give a 

brief overview of its features. 

Originally created as an extension of the HITRAN online web in- 

terface [2] to allow users sophisticated calculations and manipu- 

lations with the HITRAN data on their computers, HAPI can han- 

dle user-supplied custom data in a flexible way and fully sup- 

ports the HITRAN online data scheme and formats of the HITRAN 

[1] database. 

The principal aim of HAPI is facilitating physically-sound inter- 

pretation of observations and more realistic models for a wide va- 

riety of applications such as astrophysics, planetary science, cli- 

mate simulations, remote sensing, theoretical spectroscopy, and 

data mining. Having such a tool is important in particular to pre- 

vent possible errors in radiative-transfer calculations caused by 

misuse of spectroscopic tools and databases (see example dis- 

cussed in Ref. [636] for instance). 

The HAPI package can be obtained via the HITRAN online web- 

site ( http://hitran.org/hapi ) or from the Zenodo community ( http: 

//zenodo.org/communities/hapi/about/ ). The current version (1.1) is 

distributed under a permissive open source license (MIT). Addi- 

tional links can be found on the official HITRAN site. 

HAPI consists of two major parts. First, it has a simple built-in 

database management system written in pure Python, which gives 

a capability of data processing and filtering. Second, HAPI incorpo- 

rates a set of tools for spectra simulation accounting for the tem- 

perature, pressure, optical path length, and instrument properties. 

In more detail, the HAPI features are as follows: 

• Support for standard HITRAN parameters given in “160- 

character” or “.par” format which is described in Ref. [3] , 
• Support for the newly added types of parameters such as for- 

eign broadenings and shifts, speed dependencies for non-Voigt 

profiles, line mixing coefficients, etc. 
• Communication with the HITRAN online web interface using the 

REST HTTP protocol in order to get the most up-to-date HITRAN 

data, 
• Python implementations for line profiles including the partially 

correlated quadratic speed-dependent hard collision model 

(Hartmann-Tran profile [7,8,13,14] ), 
• Python implementation of the Total Internal Partition Sums 

(based on TIPS-2011 [112] and incorporating a large update out- 

lined in this paper), 
• High-resolution single-layer spectra simulation accounting for 

pressure, temperature, optical path length and instrument func- 

tion. In the simplest case, the simulation is performed in a sin- 

gle step using a functional approach. See Fig. 25 where HAPI 

was used to generate cross-sections of ethylene to compare 

with experimental data. 
• Capability of modeling the absorption cross sections broadened 

by a mixture of gases of astrophysical and planetary inter- 

ests. The parameters for the foreign broadenings and shift are 

gradually being added to the HITRAN online system (see out- 

line in Refs. [4] [5] ). Fig. 31 shows an example of how one 

can generate cross-sections of acetylene broadened by differ- 

ent planetary-relevant proportions of hydrogen and helium (see 

Section 2.26 for details). 
• Flexibility in the scheme of the absorption cross-section calcu- 

lation. Each part of the scheme given in Ref. [5] can be cus- 

tomized by user. 
• Capability of extending the HAPI functionality by adding cus- 

tom line shapes, partition sums, instrumental functions, envi- 

ronment dependences, and radiative-transfer code. 
• Compatibility with a large set of third-party libraries in Python, 

C/C ++ , Java etc…

In the near future, in order to improve the simulation of the ab- 

sorption cross sections, it is planned to include the full relaxation 

matrix calculation for line mixing for a number of molecules of 

atmospheric importance [117,238,239] . Inclusion of the line mix- 

ing in the calculation is expected to enable sub-percent accuracy 

(provided other parameters are known very accurately) for bands 

of atmospheric gases to better satisfy highly-precise ground and 

satellite measurements. 
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Fig. 30. Groups of related parameters such as those relating to the HT profile in different temperature regions are selected from a separate set of overlay panels in the 

HITRAN online interface. When one or more temperature groups are chosen, the three "Common parameters" are also automatically selected. Conversely, these common 

parameters are removed from the selection when no temperature group is chosen for this profile. Different broadening species are presented on separate panels, and may 

be selected from the labeled tabs at the top of the overlay. 

Fig. 31. Cross-sections of acetylene in different environments of hydrogen and helium, generated with HAPI. 

At the current time HAPI requires the user to be familiar with 

Python, although most of the functions are prewritten and with 

the help of the manual one does not need to have advanced 

knowledge of that computer language. In order to extend the range 

of users, we plan to create a flexible graphical user interface (GUI). 

This interface will give the user a possibility to simulate, plot and 

compare line-by-line and raw spectral data with a flexible control 

of scale, units, and computational parameters (just as is possible in 

the current Python version of HAPI). The new software will sup- 

port Windows, Linux and MacOS. 
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Table 13 

List of isotopologues whose partition sums have been updated for this edition of HITRAN. Note that there a few rare isotopologues here that are 

not in HITRAN. 

Molecule ID Isotopologues 

1 H 2 
16 O, H 2 

18 O, H 2 
17 O, HD 16 O, HD 18 O, HD 17 O, D 2 

16 O, D 2 
18 O, D 2 

17 O 

2 12 C 16 O 2 , 
13 C 16 O 2 , 

16 O 12 C 18 O, 16 O 12 C 17 O, 16 O 13 C 18 O, 16 O 13 C 17 O, 12 C 18 O 2 , 
17 O 12 C 18 O, 12 C 17 O 2 , 

13 C 18 O 2 , 
18 O 13 C 17 O, 13 C 17 O 2 , 

14 C 16 O 2 
4 14 N 2 

16 O 

5 12 C 16 O, 13 C 16 O, 12 C 18 O, 12 C 17 O, 13 C 18 O, 13 C 17 O, 14 C 16 O, 14 C 18 O, 14 C 17 O 

6 12 CH 4 

7 16 O 2 , 
16 O 18 O, 16 O 17 O, 18 O 18 O, 18 O 17 O, 17 O 17 O 

11 14 NH 3 , 
15 NH 3 

12 H 

14 N 

16 O 3 , H 

15 N 

16 O 3 
13 16 OH 

14 H 

19 F, D 19 F 

15 H 

35 Cl, H 

37 Cl, D 35 Cl, D 37 Cl 

16 H 

79 Br, H 

81 Br, D 79 Br, D 81 Br 

17 H 

127 I, D 127 I 

20 H 2 
12 C 16 O 

22 14 N 2 , 
14 N 

15 N, 15 N 2 

23 H 

12 C 14 N, H 

13 C 14 N, H 

12 C 15 N 

25 H 2 
16 O 2 

26 12 C 2 H 2 

28 31 PH 3 

29 12 C 16 O 19 F 2 , 
13 C 16 O 19 F 2 

31 H 2 
32 S, H 2 

34 S, H 2 
33 S 

39 12 CH 3 
16 OH 

47 32 S 16 O 3 
49 12 C 16 O 35 Cl 2 , 

12 C 16 O 35 Cl 37 Cl 

6.3. Total internal partition sums (TIPS) 

Total internal partition sums (TIPS) were determined for all 

molecules and isotopologues in HITRAN2016 and for a number of 

isotopologues of molecules of interest in planetary atmospheres. 

The current TIPS data are calculated in one-degree steps from 

1 K to T max , where T max is determined separately for each iso- 

topologue based on convergence of the partition sums. The TIPS 

are comprised of updated calculations and values from previous 

studies of TIPS [112,637–639] . The updates can be grouped into 

several categories: improvements in ab initio calculations that al- 

low direct sums over energy levels, improved Q vib values using 

the anharmonic approximation [640] , and calculations for new 

molecule/isotopologues in the HITRAN database. The updates that 

were made for isotopologues in this edition of HITRAN are listed 

in Table 13 . The updates are detailed in an accompanying paper 

[641] in this HITRAN2016 special issue. Note that an error was 

found in Tables 1 and 2 of Ref. [641] where the values correspond- 

ing to partition sums of the 16 O 

17 O isotopologue were a factor 

of six too large. This has been fixed in the official release of HI- 

TRAN2016. 

The TIPS are made available to the scientific community in 

the form of tables and codes that rapidly recall the TIPS for 

any molecule, isotopologue, and temperature. There are several 

codes that are distributed with this edition of HITRAN: FOR- 

TRAN codes TIPS_2017.for and BD_TIPS_2017.for and a python code 

TIPS_2017.py with associated dictionaries. TIPS_2017.for is a stand- 

alone code that queries the user for a molecule, isotopologue, and 

temperature and returns Q(T). BD_TIPS_2017.for is a subroutine ap- 

plication that users can insert into their codes to return Q(T) for 

a molecule/isotopologue/temperature selection. The python code 

uses python dictionaries to recall Q(T). The dictionaries are labeled 

by the molecule number and local ID number, see the TIPS arti- 

cle [641] for details. Details are given to develop custom python 

algorithms for particular molecule/isotopologue combinations. The 

TIPS python package was incorporated into the HITRAN Application 

Programming Interface (HAPI) [5] in order to seamlessly integrate 

into the cross-section generating process. The tables and codes are 

available at faculty.uml.edu/Robert_Gamache and www.hitran.org . 

7. Conclusions 

The improvements, expansions and new structure in the new 

HITRAN database release have been elaborated upon. For the line- 

by-line data, improved line position, intensity, and line-shape pa- 

rameters for many of the previously existing molecules and iso- 

topologues have been introduced. Many new lines/bands have been 

added for different molecules and their isotopologues allowing for 

a more complete database (for atmospheric applications) and for 

the expansion of the spectral coverage of the existing line lists. 

Additionally, HITRAN continues evolving in terms of structure and 

scope. A new relational database structure has been established 

[2] that enabled significant expansion of the amount of important 

spectroscopic parameters provided in the database. Literally dozens 

of new parameters have been introduced that allow accommoda- 

tion of non-Voigt line shapes [6] ; flexible representation of broad- 

ening parameters and their temperature dependencies; broaden- 

ing and shift of spectral lines due to pressure of gases domi- 

nant in planetary atmospheres [4] (namely, H 2 , He and CO 2 ). This 

extensive expansion of the database would have been very im- 

practical in the old fixed-length ASCII format of previous HITRAN 

editions. An interface on the internet has also been established 

( www.hitran.org ) that provides the diverse group of HITRAN users 

with much power to filter, extract, plot, and query the database. 

Even more power has been given to the user through the intro- 

duction of the HITRAN Application Programming Interface (HAPI) 

[5] . HAPI is currently a set of Python libraries which not only al- 

lows users to download data from the database but also to carry 

out: 1) single-layer absorption calculations at different thermody- 

namic conditions, accounting for an instrument function, new line 

shape parametrizations, perturbing gas or gases, etc, 2) extended 

functionality provided by custom functions, line lists and partition 

sums. 

Several new molecules and isotopologues have been added to 

the line-by-line portion of the compilation, which improve model- 

ing of the absorption of the terrestrial atmosphere and beyond. 

One of the main highlights of the new edition is the monumen- 

tal expansion of the cross-sectional part of the database which in- 

creased (in terms of amount of gases) about six-fold and now fea- 
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tures over 300 species. These cross-sections can also be accessible 

through www.hitran.org where they are divided into categories for 

easy browsing. 

Aerosols and collision induced absorption datasets have also 

been revised and extended. 

The compilation is free and can be accessed through www. 

hitran.org . We recommend citing this article when using the HI- 

TRAN2016 data. If an update to a certain molecule is announced 

on the website and is being used, then we encourage users to cite 

when they downloaded the data. 

8. Future work 

While HITRAN continues to be an international standard for 

reference spectroscopy for atmospheric and planetary gases, there 

is still substantial room for improvement. In many subsections 

throughout the paper we mention the avenues for improvements 

for individual molecules, but they are really just the tip of the ice- 

berg. 

The studies of the terrestrial atmosphere require further im- 

provements to the existing parameters and what is more challeng- 

ing: population of the dataset of the non-Voigt line-shape param- 

eters. As was discussed above, the amount of measurements and 

calculations of the parameters obtained using the recommended 

HT profile are scarce and it will take time before a majority of HI- 

TRAN lines will have these parameters provided. Also, we remind 

experimentalists and theoreticians to take extreme care when fit- 

ting to these parameters to avoid correlations. 

The line mixing for many molecules is now available in 

HITRAN through diagonal (Rozenkranz) parametrization. Other 

parametrizations require provision of additional software (just as 

it is done in this edition in the case of carbon dioxide) that may 

have to be molecule or even band-specific. HAPI offers an excellent 

avenue for addition of this extra functionality. 

At the moment only seven HITRAN gases have pressure broad- 

ening (and their temperature dependence) and pressure shift of 

lines by H 2 , He and CO 2 . We would like to extend this to all gases 

important for planetary research. Also, in order to aid modeling of 

the terrestrial atmosphere, we will add parameters associated with 

broadening of spectral lines by water vapor (which is sufficiently 

abundant to make an impact on retrievals in the tropics, for in- 

stance). 

With an exception of a few diatomic molecules (namely NO, 

OH, HF, HCl, HBr, HI and H 2 ) HITRAN data are limited to tem- 

peratures encountered in the Earth atmosphere and will be de- 

ficient when modeling high-temperature environments including 

stellar and some planetary atmospheres. The users are encour- 

aged to employ the HITEMP database for these applications [278] . 

However, there are currently only five gases that are provided in 

HITEMP (H 2 O, CO 2 , CO, NO, OH) and a major update of the HITEMP 

database will be released in the near future. This update will in- 

clude improvement of the spectroscopy of the existing HITEMP 

gases but also will introduce additional molecules. 

While a major update is featured here for the cross-sectional 

part of the database, we note that it is still far from complete in 

terms of gases. Moreover, all of the current updates are in the IR 

part of the spectrum and another substantial update is needed for 

the UV cross-sections. 

A massive revision and expansion of the CIA data is planned for 

the near future. 

Structure and the tools provided with the database are also a 

very important part of the HITRAN database. We plan further im- 

provements to the documentation for the HITRAN online interface 

and the development of video tutorials. Finally, development of an 

interactive interface is planned for HAPI, for which video tutorials 

will also be created. 
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