51 research outputs found

    Effect of leg conformation of Duroc sow longevity

    Get PDF
    Ponencia publicada en ITEA, vol.104Caracteres morfológicos como la conformación de los aplomos pueden tener un papel clave en la longevidad de las cerdas. Dentro de este contexto, se evaluó el efecto de los aplomos sobre la longevidad de 587 cerdas Duroc, analizándose tanto la supervivencia global de las cerdas (SG) como la supervivencia bajo tres causas de fallida distintas (competing risk): muerte (BM), baja productividad (BP) y baja fertilidad (BF). La conformación global de los aplomos influyó (p < 0,001) la longevidad de las cerdas en los análisis SG, BP y BF, aumentado el riesgo de fallida a medida que empeoraban los aplomos. El crecimiento anormal de las pezuñas (p < 0,001) y la presencia de golpes o bultos en las patas (p < 0,05) incrementaba el riesgo de fallida en los análisis SG, BP y BF. Las cerdas plantígradas tenían un riesgo mayor de fallida en los análisis SG (p < 0,001) y BP (p < 0,05), las cerdas con hiperextensión de las patas tenían un riesgo mayor en el análisis BF (p < 0,05), mientras que la presencia de pies abiertos aumentaba el riesgo de fallida en el análisis SG (p < 0,05). Las estimaciones de heredabilidad para la longevidad de las cerdas fueron de 0,07 (análisis SG), 0,02 (análisis BP) y 0,08 (análisis BF).Morphologic traits such as leg conformation can play a key role on sow longevity. Within this context, the effect of leg conformation was evaluated on longevity data from 587 Duroc sows, longevity being characterized as overall longevity (OS) or sow failure due to death (DE), low productivity (LP) or low fertility (LF; competing risk analyses). Overall leg conformation score influenced (P < 0.001) sow longevity in OS, LP and LF analyses, impairing sow longevity when leg conformation got worse. Abnormal hoof growth (P < 0.001) and presence of bumps or injuries in legs (P < 0.001) increased the risk of failure in OS, LP and LF analyses. Plantigrade sows showed a higher culling risk in OS (P < 0.001) and LP (P < 0.05) analysis, sows with sickle-hooked leg had a higher culling risk in the LF analysis (P < 0.05), whereas splayed feet increased sow failure in the OS analysis (P < 0.05). Estimates of heritability for sow longevity were 0.07 (GS analysis), 0.02 (LP analysis) and 0.08 (LF analysis)

    CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius

    Full text link
    We study the components of cool and warm/hot gas in the circumgalactic medium (CGM) of simulated galaxies and address the relative production of OVI by photoionization versus collisional ionization, as a function of halo mass, redshift, and distance from the galaxy halo center. This is done utilizing two different suites of zoom-in hydro-cosmological simulations, VELA (6 halos; z>1z>1) and NIHAO (18 halos; to z=0z=0), which provide a broad theoretical basis because they use different codes and physical recipes for star formation and feedback. In all halos studied in this work, we find that collisional ionization by thermal electrons dominates at high redshift, while photoionization of cool or warm gas by the metagalactic radiation takes over near z2z\sim2. In halos of 1012M\sim 10^{12}M_{\odot} and above, collisions become important again at z<0.5z<0.5, while photoionization remains significant down to z=0z=0 for less massive halos. In halos with Mv>3×1011 MM_{\textrm v}>3\times10^{11}~M_{\odot}, at z0z\sim 0 most of the photoionized OVI is in a warm, not cool, gas phase (T3×105T\lesssim 3\times 10^5~K). We also find that collisions are dominant in the central regions of halos, while photoionization is more significant at the outskirts, around RvR_{\textrm v}, even in massive halos. This too may be explained by the presence of warm gas or, in lower mass halos, by cool gas inflows

    Kinematic analysis of the Large Magellanic Cloud using Gaia DR3

    Get PDF
    Context: The high quality of the Gaia mission data is allowing to study the internal kinematics of the Large Magellanic Cloud (LMC) in unprecedented detail, providing insights on the non-axisymmetric structure of its disc. Aims: To define and validate an improved selection strategy to distinguish the LMC stars from the Milky Way foreground. To check the possible biases that assumed parameters or sample contamination from the Milky Way can introduce in the analysis of the internal kinematics of the LMC using Gaia data. Methods: Our selection is based on a supervised Neural Network classifier using as much as of the Gaia DR3 data as possible. We select three samples of candidate LMC stars with different degrees of completeness and purity; we validate them using different test samples and we compare them with the Gaia Collaboration paper sample. We analyse the resulting velocity profiles and maps, and we check how these results change when using also the line-of-sight velocities, available for a subset of stars. Results: The contamination in the samples from Milky Way stars affects basically the results for the outskirts of the LMC, and the absence of line-of-sight velocities does not bias the results for the kinematics in the inner disc. For the first time, we perform a kinematic analysis of the LMC using samples with the full three dimensional velocity information from Gaia DR3. Conclusions: The dynamics in the inner disc is mainly bar dominated; the kinematics on the spiral arm over-density seem to be dominated by an inward motion and a rotation faster than that of the disc in the piece of the arm attached to the bar; contamination of MW stars seem to dominate the outer parts of the disc and mainly affects old evolutionary phases; uncertainties in the assumed disc morphological parameters and line-of-sight velocity of the LMC can in some cases have significant effects. [ABRIDGED

    Bottlenecks in the Acute Stroke Care System during the COVID-19 Pandemic in Catalonia

    Get PDF
    Introduction: The COVID-19 pandemic resulted in significant healthcare reorganizations, potentially striking standard medical care. We investigated the impact of the COVID-19 pandemic on acute stroke care quality and clinical outcomes to detect healthcare system's bottlenecks from a territorial point of view. Methods: Crossed-data analysis between a prospective nation-based mandatory registry of acute stroke, Emergency Medical System (EMS) records, and daily incidence of COVID-19 in Catalonia (Spain). We included all stroke code activations during the pandemic (March 15-May 2, 2020) and an immediate prepandemic period (January 26-March 14, 2020). Primary outcomes were stroke code activations and reperfusion therapies in both periods. Secondary outcomes included clinical characteristics, workflow metrics, differences across types of stroke centers, correlation analysis between weekly EMS alerts, COVID-19 cases, and workflow metrics, and impact on mortality and clinical outcome at 90 days. Results: Stroke code activations decreased by 22% and reperfusion therapies dropped by 29% during the pandemic period, with no differences in age, stroke severity, or large vessel occlusion. Calls to EMS were handled 42 min later, and time from onset to hospital arrival increased by 53 min, with significant correlations between weekly COVID-19 cases and more EMS calls (rho = 0.81), less stroke code activations (rho = -0.37), and longer prehospital delays (rho = 0.25). Telestroke centers were afflicted with higher reductions in stroke code activations, reperfusion treatments, referrals to endovascular centers, and increased delays to thrombolytics. The independent odds of death increased (OR 1.6 [1.05-2.4], p 0.03) and good functional outcome decreased (mRS ≤2 at 90 days: OR 0.6 [0.4-0.9], p 0.015) during the pandemic period. Conclusion: During the COVID-19 pandemic, Catalonia's stroke system's weakest points were the delay to EMS alert and a decline of stroke code activations, reperfusion treatments, and interhospital transfers, mostly at local centers. Patients suffering an acute stroke during the pandemic period had higher odds of poor functional outcome and death. The complete stroke care system's analysis is crucial to allocate resources appropriately

    Effectiveness of thrombectomy in stroke according to baseline prognostic factors: inverse probability of treatment weighting analysis of a population-based registry

    Get PDF
    Background and Purpose In real-world practice, the benefit of mechanical thrombectomy (MT) is uncertain in stroke patients with very favorable or poor prognostic profiles at baseline. We studied the effectiveness of MT versus medical treatment stratifying by different baseline prognostic factors. Methods Retrospective analysis of 2,588 patients with an ischemic stroke due to large vessel occlusion nested in the population-based registry of stroke code activations in Catalonia from January 2017 to June 2019. The effect of MT on good functional outcome (modified Rankin Score ≤2) and survival at 3 months was studied using inverse probability of treatment weighting (IPTW) analysis in three pre-defined baseline prognostic groups: poor (if pre-stroke disability, age >85 years, National Institutes of Health Stroke Scale [NIHSS] >25, time from onset >6 hours, Alberta Stroke Program Early CT Score 3), good (if NIHSS <6 or distal occlusion, in the absence of poor prognostic factors), or reference (not meeting other groups’ criteria). Results Patients receiving MT (n=1,996, 77%) were younger, had less pre-stroke disability, and received systemic thrombolysis less frequently. These differences were balanced after the IPTW stratified by prognosis. MT was associated with good functional outcome in the reference (odds ratio [OR], 2.9; 95% confidence interval [CI], 2.0 to 4.4), and especially in the poor baseline prognostic stratum (OR, 3.9; 95% CI, 2.6 to 5.9), but not in the good prognostic stratum. MT was associated with survival only in the poor prognostic stratum (OR, 2.6; 95% CI, 2.0 to 3.3). Conclusions Despite their worse overall outcomes, the impact of thrombectomy over medical management was more substantial in patients with poorer baseline prognostic factors than patients with good prognostic factors

    Galactic archaeology with asteroseismology and spectroscopy: Red giants observed by CoRoT and APOGEE

    Get PDF
    With the advent of the space missions CoRoT and Kepler, it has recently become feasible to determine precise asteroseismic masses and relative ages for large samples of red giant stars. We present the CoRoGEE dataset, obtained from CoRoT light curves for 606 red giants in two fields of the Galactic disc that have been co-observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of ≲2% in distance, ~4% in radius, ~9% in mass and ~25% in age. We also assessed systematic age uncertainties stemming from different input physics and mass loss. We discuss the correlation between ages and chemical abundance patterns of field stars over a broad radial range of the Milky Way disc (5 kpc <RGal< 14 kpc), focussing on the [α/Fe]-[Fe/H]-age plane in five radial bins of the Galactic disc. We find an overall agreement with the expectations of pure chemical-evolution models computed before the present data were available, especially for the outer regions. However, our data also indicate that a significant fraction of stars now observed near and beyond the solar neighbourhood migrated from inner regions. Mock CoRoGEE observations of a chemodynamical Milky Way disc model indicate that the number of high-metallicity stars in the outer disc is too high to be accounted for even by the strong radial mixing present in the model. The mock observations also show that the age distribution of the [α/Fe]-enhanced sequence in the CoRoGEE inner-disc field is much broader than expected from a combination of radial mixing and observational errors. We suggest that a thick-disc/bulge component that formed stars for more than 3 Gyr may account for these discrepancies. Our results are subject to future improvements due to (a) the still low statistics, because our sample had to be sliced into bins of Galactocentric distances and ages; (b) large uncertainties in proper motions (and therefore guiding radii); and (c) corrections to the asteroseismic mass-scaling relation. The situation will improve not only upon the upcoming Gaia data releases, but also with the foreseen increase in the number of stars with both seismic and spectroscopic information

    Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

    Get PDF
    Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Muon spin relaxation in Re-substituted HgA<sub>2</sub>Ca<sub>n-1</sub>Cu<sub>n</sub>O<sub>2n+2+x</sub> (A=Sr, Ga; n=2,3) superconductors

    No full text
    One of the fundamental features of the superconducting cuprates is their layered structure. They are made of superconducting CuO2 planes—or blocks of planes—separated by other layers which act as charge reservoirs and, depending on their atomic constituents and thickness, can be insulating, metallic, or even superconducting. This anisotropic structure is thought to be at the origin of most of the unusual superconducting properties of these compounds, as, for instance, the high critical temperature Tc and the low irreversibility line..
    corecore