1,085 research outputs found

    Phase I In Vitro Metabolic Profiling of the Synthetic Cannabinoid Receptor Agonists CUMYL-THPINACA and ADAMANTYL-THPINACA

    Get PDF
    Synthetic cannabinoid receptor agonists (SCRAs) remain popular drugs of abuse. As many SCRAs are known to be mostly metabolized, in vitro phase I metabolic profiling was conducted of the two indazole-3-carboxamide SCRAs: CUMYL-THPINACA and ADAMANTYL-THPINACA. Both compounds were incubated using pooled human liver microsomes. The sample clean-up consisted of solid phase extraction, followed by analysis using liquid chromatography coupled to a high resolution mass spectrometer. In silico-assisted metabolite identification and structure elucidation with the data-mining software Compound Discoverer was applied. Overall, 28 metabolites were detected for CUMYL-THPINACA and 13 metabolites for ADAMATYL-THPINACA. Various mono-, di-, and tri-hydroxylated metabolites were detected. For each SCRA, an abundant and characteristic di-hydroxylated metabolite was identified as a possible in vivo biomarker for screening methods. Metabolizing cytochrome P450 isoenzymes were investigated via incubation of relevant recombinant liver enzymes. The involvement of mainly CYP3A4 and CYP3A5 in the metabolism of both substances were noted, and for CUMYL-THPINACA the additional involvement (to a lesser extent) of CYP2C8, CYP2C9, and CYP2C19 was observed. The results suggest that ADAMANTYL-THPINACA might be more prone to metabolic drug−drug interactions than CUMYL-THPINACA, when co-administrated with strong CYP3A4 inhibitors

    Susceptibility induced gray–white matter MRI contrast in the human brain

    Get PDF
    AbstractMR phase images have shown significantly improved contrast between cortical gray and white matter regions compared to magnitude images obtained with gradient echo sequences. A variety of underlying biophysical mechanisms (including iron, blood, myelin content, macromolecular chemical exchange, and fiber orientation) have been suggested to account for this observation but assessing the individual contribution of these factors is limited in vivo.For a closer investigation of iron and myelin induced susceptibility changes, postmortem MRI of six human corpses (age range at death: 56–80years) was acquired in situ. Following autopsy, the iron concentrations in the frontal and occipital cortex as well as in white matter regions were chemically determined. The magnetization transfer ratio (MTR) was used as an indirect measure for myelin content. Susceptibility effects were assessed separately by determining R2* relaxation rates and quantitative phase shifts. Contributions of myelin and iron to local variations of the susceptibility were assessed by univariate and multivariate linear regression analysis.Mean iron concentration was lower in the frontal cortex than in frontal white matter (26±6 vs. 45±6mg/kg wet tissue) while an inverse relation was found in the occipital lobe (cortical gray matter: 41±10 vs. white matter: 34±10mg/kg wet tissue). Multiple regression analysis revealed iron and MTR as independent predictors of the effective transverse relaxation rate R2* but solely MTR was identified as source of MR phase contrast. R2* was correlated with iron concentrations in cortical gray matter only (r=0.42, p<0.05).In conclusion, MR phase contrast between cortical gray and white matter can be mainly attributed to variations in myelin content, but not to iron concentration. Both, myelin and iron impact the effective transverse relaxation rate R2* significantly. Magnitude contrast is limited because it only reflects the extent but not the direction of the susceptibility shift

    Clinical forensic radiology in strangulation victims: forensic expertise based on magnetic resonance imaging (MRI) findings

    Get PDF
    Based on only one objective and several subjective signs, the forensic classification of strangulation incidents concerning their life-threatening quality can be problematic. Reflecting that it is almost impossible to detect internal injuries of the neck with the standard forensic external examination, we examined 14 persons who have survived manual and ligature strangulation or forearm choke holds using MRI technique (1.5-T scanner). Two clinical radiologists evaluated the neck findings independently. The danger to life was evaluated based on the "classical” external findings alone and in addition to the radiological data. We observed hemorrhaging in the subcutaneous fatty tissue of the neck in ten cases. Other frequent findings were hemorrhages of the neck and larynx muscles, the lymph nodes, the pharynx, and larynx soft tissues. Based on the classical forensic strangulation findings with MRI, eight of the cases were declared as life-endangering incidents, four of them without the presence of petechial hemorrhage but with further signs of impaired brain function due to hypoxia. The accuracy of future forensic classification of the danger to life will probably be increased when it is based not only on one objective and several subjective signs but also on the evidence of inner neck injuries. However, further prospective studies including larger cohorts are necessary to clarify the value of the inner neck injuries in the forensic classification of surviving strangulation victim

    Bridging the virtual and the physical space: Kornelia – a chatbot for public libraries

    Get PDF
    This paper reflects the collaboration of a network of public libraries, a student group, and three SMEs in order to develop a chatbot in a cost-effective manner. The project, managed by scholars of information science and their academic mentor, has yielded fruitful results. Chatbot technology can enable digital natives to access public libraries in a new way. Progressive libraries need to take this new public into account and adapt the services to their needs. A considerable number of chatbots has been implemented in libraries, particularly in German-speaking countries. Those chatbots are generally set up in order to serve as an extension of the help desk and to teach information literacy skills

    Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study

    Get PDF
    AbstractQuantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic susceptibility distribution of tissue in vivo from gradient echo magnetic resonance phase images. It is commonly assumed that paramagnetic iron is the predominant source of susceptibility variations in gray matter as many studies have reported a reasonable correlation of magnetic susceptibility with brain iron concentrations in vivo. Instead of performing direct comparisons, however, all these studies used the putative iron concentrations reported in the hallmark study by Hallgren and Sourander (1958) for their analysis. Consequently, the extent to which QSM can serve to reliably assess brain iron levels is not yet fully clear. To provide such information we investigated the relation between bulk tissue magnetic susceptibility and brain iron concentration in unfixed (in situ) post mortem brains of 13 subjects using MRI and inductively coupled plasma mass spectrometry. A strong linear correlation between chemically determined iron concentration and bulk magnetic susceptibility was found in gray matter structures (r=0.84, p<0.001), whereas the correlation coefficient was much lower in white matter (r=0.27, p<0.001). The slope of the overall linear correlation was consistent with theoretical considerations of the magnetism of ferritin supporting that most of the iron in the brain is bound to ferritin proteins. In conclusion, iron is the dominant source of magnetic susceptibility in deep gray matter and can be assessed with QSM. In white matter regions the estimation of iron concentrations by QSM is less accurate and more complex because the counteracting contribution from diamagnetic myelinated neuronal fibers confounds the interpretation

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (Ό̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),Ό̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe
    • 

    corecore