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Quantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic
susceptibility distribution of tissue in vivo from gradient echo magnetic resonance phase images. It is com-
monly assumed that paramagnetic iron is the predominant source of susceptibility variations in gray matter
as many studies have reported a reasonable correlation of magnetic susceptibility with brain iron concentrations

g‘;’; Vr‘:girtjzve susceptibility mapping in vivo. Instead of performing direct comparisons, however, all these studies used the putative iron concentra-
Brain iron tions reported in the hallmark study by Hallgren and Sourander (1958) for their analysis. Consequently, the ex-
Myelin tent to which QSM can serve to reliably assess brain iron levels is not yet fully clear. To provide such information

we investigated the relation between bulk tissue magnetic susceptibility and brain iron concentration in unfixed
(in situ) post mortem brains of 13 subjects using MRI and inductively coupled plasma mass spectrometry. A
strong linear correlation between chemically determined iron concentration and bulk magnetic susceptibility
was found in gray matter structures (r=0.84, p<0.001), whereas the correlation coefficient was much lower
in white matter (r=0.27, p<0.001). The slope of the overall linear correlation was consistent with theoretical
considerations of the magnetism of ferritin supporting that most of the iron in the brain is bound to ferritin pro-
teins. In conclusion, iron is the dominant source of magnetic susceptibility in deep gray matter and can be
assessed with QSM. In white matter regions the estimation of iron concentrations by QSM is less accurate and
more complex because the counteracting contribution from diamagnetic myelinated neuronal fibers confounds
the interpretation.

Phase imaging
Post mortem

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.

Introduction enable both improved pre-processing of the input GRE data (T. Liu et

al.,, 2011a; Schweser et al., 2011) and reconstruction of susceptibility

Quantitative susceptibility mapping (QSM) is a novel post-
processing technique which allows the calculation of the bulk magnetic
susceptibility distribution of tissue in vivo from gradient echo (GRE)
magnetic resonance phase images (Li and Leigh, 2004; Reichenbach,
2012). QSM based on single-scan clinical data recently became feasible
due to increased computational power and novel algorithms that
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maps with reduced artifact level (Wharton and Bowtell, 2010). Suscep-
tibility maps acquired from volunteers have been shown to demonstrate
unprecedented anatomical contrast in both white and gray matter re-
gions (T. Liu et al,, 2011b; Petridou et al., 2009; Schaéfer et al., 2011;
Schweser et al, 2011; Shmueli et al, 2009; Wharton and Bowtell,
2010). The clinical potential of QSM is still under investigation but it is
anticipated that susceptibility maps of patients will provide novel in-
sights into disease induced tissue changes (Reichenbach, 2012). In partic-
ular, at magnetic field strengths greater than 1.5 T the contrast-to-noise
characteristics of GRE phase images are superior to magnitude images
(Duyn et al., 2007) substantiating that QSM has the potential to be
more sensitive with respect to magnetic tissue properties than conven-
tional magnitude-based techniques such as mapping transverse relaxa-
tion rates (Aquino et al., 2009; Haacke et al., 2005; Langkammer et al.,
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2010). Moreover, susceptibility maps can be calculated from any single-
echo GRE dataset that is routinely acquired with the well-established
susceptibility weighted imaging (SWI) technique (Deistung et al.,
2008; Reichenbach and Haacke, 2001) and, thus, comes at no additional
cost with routine clinical protocols.

Variations of the magnetic susceptibility of brain tissue can have
several different biophysical origins. It is currently assumed that
the susceptibility of gray matter is dominated by tissue iron which
is predominantly stored in ferritin macromolecules (Hallgren and
Sourander, 1958). The ferritin complex is a globular storage protein
for iron and known to be paramagnetic so that iron increases the
bulk magnetic susceptibility of the tissue (Schenck et al., 1992). Iron
stores in the human brain have received increasing interest as abnor-
mally increased brain iron concentrations have been found in a variety
of neurological disorders including Alzheimer's disease, Parkinson's dis-
ease and multiple sclerosis (Berg and Youdim, 2006; Khalil et al., 2011).
Therefore, much interest has focused on techniques for reliable assess-
ment of brain iron concentrations in vivo. Recent experiments in nor-
mal controls suggested relatively high correlations between tissue
susceptibility assessed by QSM and the presumed regional iron concen-
trations (Bilgic et al., 2012; Wharton and Bowtell, 2010; Wuetal.,2012)
taken from the histochemical post mortem study by Hallgren and
Sourander (1958). In particular, the bulk tissue magnetic susceptibility
of white matter is, however, also affected substantially by myelin,
which is diamagnetic and, consequently, counteracts the effect of iron
(Langkammer et al., 2010; Lee et al, 2012; C. Liu et al, 2011;
Schweser et al., 2011). In addition, substances such as blood and contri-
butions from calcium and trace elements, have also been found to affect
the magnetic susceptibility of tissue (Mitsumori et al., 2009; Schweser
et al,, 2011; Sedlacik et al., 2007; Shmueli et al,, 2011; Yamada et al.,
1996). Valid information on the true correlation of QSM measurements
with tissue iron concentrations in different regions of the brain can,
however, only be derived by direct comparison. Therefore, the goal of
this study was to investigate the relationship between chemical brain
iron concentration determined by using inductively coupled plasma
mass spectrometry and magnetic susceptibility in unfixed (in situ)
post mortem brains.

Materials and methods
Deceased subjects

Thirteen deceased subjects (mean age: 63.5 years; age range at
death: 38-81 years; 3 females) with an autopsy requested by the
local health authority were included in this study. Forensic patholo-
gists examined the corpses to ensure compliance with the inclusion
criteria, i.e., post mortem interval shorter than 72 h, no history of a
neurological disorder or external evidence of brain trauma, and ab-
sence of ferromagnetic material. The local ethics committee approved
the study and informed consent was obtained from each individual's
next of kin.

MRI

Corpses underwent MRI of the brain within 72 h after death at 3 T
(Magnetom TimTrio, Siemens Healthcare, Erlangen, Germany) using
a head coil array with 12 receive channels. The subjects were kept
refrigerated at 4 °C before scanning and, depending on the length of
this period, the body temperature Tyoqy at the beginning of the MR
data acquisition varied between 4 °C and 24 °C. High resolution GRE
MR images (Deistung et al., 2008) were acquired with an rf-spoiled,
flow compensated 3D gradient echo sequence (TR/TE=239/20 ms; flip
angle = 20°; FOV =256 x 256 mm?; voxel resolution: 0.5x0.5x 2 mm?;
88 slices; 2 averages; 6/8 Fourier in slice and phase encoding direc-
tions; receiver bandwidth =200 Hz/px; acquisition time approximately
18 min). A double-echo, fast spin echo sequence (TR/TE;/TE, = 5260/

10/73 ms, FOV =256 x 256 mm?; voxel resolution=1x1x3 mm?; 30
slices; acquisition time approximately 9 min) was used for assessing
brain anatomy. Additionally, FLAIR and high resolution MP-RAGE se-
quences were included in the MRI examination protocol. All scans
were acquired in axial orientation using GRAPPA with an acceleration
factor of 2. To provide a reference for quantitative susceptibility contrast
in vivo, one healthy (living) 58-year-old male volunteer was recruited
and the same protocol was applied. This experiment was approved by
the local ethics committee and informed written consent was obtained
from the volunteer.

Autopsy and preparation of specimens

Brains were extracted at autopsy within 12 h after MRI and main
supplying blood vessels were ligated using surgical sutures to prevent
the formation of air bubbles and wash out of blood. The extracted brains
were subsequently fixed in a 4% phosphate buffered (pH 7.0 +0.5)
formaldehyde solution (Carl Roth GmbH, Karlsruhe, Germany) for
three to five weeks. Within four days after extraction the formalin
was exchanged to ensure sufficient fixation throughout the brains
(Dawe et al,, 2009).

The fixed brains were cut axially into 10 mm thick slices using an
orientation identical to the MRI scans. Tissue structures were taken
from several pre-specified gray (globus pallidus, putamen, caudate nu-
cleus, and thalamus) and white (frontal-, occipital- and temporal white
matter, body of corpus callosum) matter. The specimens were dissected
from both hemispheres at identical positions in the appropriate brain
slices where the specific structure showed its maximum extent. Ceramic
knifes were used to avoid contamination with iron. To better equalize
the volumes of the differently sized dissected individual tissue chunks
used for mass spectrometry as well as to increase the statistical power
of the analysis, samples taken from white matter were cut in three sub-
units and those from gray matter in two subunits, respectively. Due to
its limited size in the brain section used for dissection the globus
pallidus was not divided into subunits. The volume of the resulting
specimens was approximately 10x10x 10 mm?, or slightly smaller
depending on the anatomy.

Finally, to prepare samples for mass spectrometry, all specimens
were freeze dried and weighed before and after freeze drying to en-
able calculation of wet tissue iron concentrations.

Mass spectrometry

The samples were heated at 250 °C for 30 min in a microwave-
heated autoclave UltraCLAVE III (EMLS, Leutkirch, Germany). Conse-
quently, this method measures all iron ions of the plasma regardless
of the chemical environment. Iron concentrations were determined
with an Agilent 7500ce inductively coupled plasma mass spectrometer
(Agilent 7500ce, Agilent Technologies, Santa Clara, CA, USA) at a mass-
to-charge ratio of 56 in Helium-mode. Helium was added at a flow rate
of 5.3 ml/min to reduce polyatomic interferences of “°Ar'¢0~
and “°Ca'®0 ™. The accuracy of the method was checked with the NIST
RM 8414 bovine muscle (NIST, Gaithersburg, MD, USA) and the
obtained results (69.7 mg/kg+5.1 mg/kg; n=38) agreed well with
the certified concentrations (71.2 mg/kg 4 9.2 mg/kg; n=38).

Image processing and analysis

Image analysis was performed blinded to the results of the chemical
analysis. Aliasing of the GRE phase was resolved with a Fourier-domain
unwrapping technique (Li et al, 2011; Schofield and Zhu, 2003;
Schweser et al., in press) and background phase contributions were
eliminated with the SHARP technique (radius 5 mm, regularization pa-
rameter 0.05). Additionally, voxels with unreliable phase values were
identified based on the local phase gradient and by thresholding the
GRE magnitude image (Schweser et al., 2011). Finally, quantitative
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susceptibility maps with well suppressed streaking artifacts were
reconstructed from the background corrected phase images using the
Homogeneity Enabled Incremental Dipole Inversion (HEIDI) algorithm
Schweser et al., 2012b, 2012c. Briefly, this algorithm solves the inverse
field-to-source problem from GRE phase to susceptibility in three con-
secutive steps. HEIDI divides the Fourier space into three sub-domains
according to the conditioning of the inverse problem: A sub-domain
where the inversion is well-posed, a transition sub-domain where sub-
stantial noise amplification occurs, and a sub-domain where the inver-
sion is ill-posed and information about the susceptibility distribution is
inherently lost. Inversion in the well-posed and transitional sub-
domains is then performed without explicit regularization using a con-
ventional least-squares solver; noise amplification in the transitional
domain is addressed by applying a denoising algorithm. Because recon-
struction of the ill-posed sub-domain requires a priori knowledge on the
susceptibility distribution HEIDI identifies regions in the susceptibility
distribution that are homogeneous. This is achieved by thresholding
the gradient of the background-corrected phase images. Correction of
this information is achieved by incorporating information that is derived
from the Laplacian of the phase and the gradient of the magnitude sig-
nal. The ill-posed sub-domain is finally reconstructed by solving a
weighted total-variation problem with the a priori low gradient informa-
tion as a weight. Parameters of the HEIDI algorithms were taken from
the original HEIDI publication where these values have been optimized
in a numerical model. The process of QSM is schematically depicted in
Fig. 1.

According to Curie's law the magnetic susceptibility of paramag-
netic materials, such as ferritin-bound brain iron, is approximately in-
verse proportional to temperature. The susceptibility maps in this
study were, therefore, corrected for each subject with respect to the
measured body temperature, T,oqy, and converted to the in vivo con-
dition (T=36.5 °C) (Schenck, 1992):

273 + Thoa
X365 = Xmeasured * (W%OSY)

Subsequently, the zero-points of all resulting susceptibility maps
were adjusted for each subject individually to the average susceptibility

unwrapped
GRE phase

voxels with
unreliable phase

magnitude

value of occipital white matter because this region had the lowest
inter-subject variance in iron concentration (standard deviation of
9 mg/kg wet tissue in this study (Table 1) or 10 mg/kg wet tissue in
Langkammer et al. (2010), respectively). This procedure was re-
quired because QSM is intrinsically limited to providing susceptibility
differences rather than absolute susceptibility values (Cheng et al,
2009).

According to the location of the dissected tissue specimens, regions
of interest (ROI) were outlined manually on the first echo images of the
fast spin echo sequence. The size of these ROIs was identical to the dis-
sected tissue specimens. Subsequently, the ROIs were then transformed
automatically to the susceptibility maps using an affine registration and
transformation algorithm from FSL (Smith et al., 2004).

Statistical methods

Statistical analyses were performed using STATISTICA 7.1 (StatSoft,
Tulsa, USA) and a p-value below 0.05 was considered as statistically sig-
nificant. Linear regression models were employed to investigate the re-
lation between chemically determined iron concentrations and bulk
tissue susceptibility. All statistical analyses were first carried out for all
brain regions, and then for gray and white matter regions separately.

Results

Iron concentrations were obtained from 457 specimens (172 from
deep gray matter and 285 from white matter structures). From one
subject only one hemisphere was dissected and accidentally contami-
nated samples were excluded. The mean wet weight of the tissue spec-
imens was 0.62 g (standard deviation: 0.36 g). Inductively coupled
plasma mass spectrometry revealed the highest mean iron concentration
in the globus pallidus, followed by the putamen, the caudate nucleus,
and the thalamus. The iron concentrations were in line with previous
post mortem work (Hallgren and Sourander, 1958) and all mean iron
concentrations in white matter were lower than in the deep gray matter
structures (Table 1). The analysis of the formaldehyde solution before
and after the fixation process did not reveal any iron content, indicating
that no leakage of tissue iron into the buffer solution had occurred.

Fig. 1. Schematic illustration of the QSM framework with data from a deceased 89-year-old subject: the gradient echo phase is unwrapped and preprocessed with the SHARP al-
gorithm while the magnitude additionally serves for the identification of unreliable voxels (represented by dark pixels). Using a total variation regularization strategy incorporating
a priori information from the complex gradient echo signal, the resulting susceptibility maps are reconstructed.
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Table 1
Chemically determined mean iron concentrations and mean bulk tissue magnetic sus-
ceptibilities grouped by brain regions.

N  Iron concentration Bulk susceptibility

(mg/kg wet tissue) (ppm)
Globus pallidus 25 205439 (169-239) 0.155+0.038 (0.119-0.182)
Putamen 49 160437 (132-183) 0.129 £ 0.051 (0.085-0.170)
Caudate nucleus 49 105427 (86-121) 0.078 £0.032 (0.053-0.097)
Thalamus 49 50412 (41-58) 0.012+0.035 (—0.014-0.039)
Corpus callosum 67 29410 (21-32) —0.0124+0.028 (—0.031-0.005)
Frontal WM 73  47+£11 (36-54) —0.00940.026 (—0.008-0.026)
Temporal WM 72 464+11 (39-52) —0.0034+0.028 (—0.021-0.015)
Occipital WM 73  36+9 (29-42) —0.0004+0.016 (—0.007-0.010)

Values are given in mean + standard deviation (inter-quartile range).

Susceptibility values are given relative to the reference region (occipital white matter)
so that positive and negative values represent more and less diamagnetic bulk
magnetic susceptibility relative to the reference region, respectively.

N represents the number of samples included in the analysis.

WM = white matter.

The visual appearance of susceptibility maps (Fig. 2) was in line
with previous QSM work, although visibility of small vessels was sub-
stantially increased, which may be attributed to the increased deoxy-
genation level of the blood. The results of the regional QSM analysis
are summarized in detail in Table 1 where positive and negative values
represent paramagnetic and diamagnetic magnetic susceptibilities, re-
spectively, relative to occipital white matter. All deep gray matter struc-
tures were paramagnetic relative to white matter structures.

Regional magnetic susceptibilities were highly correlated with the
results from mass spectrometry, in particular with higher iron con-
centrations. Fig. 3 illustrates the strong positive linear correlation

in vive

Fig. 2. SHARP processed phase (top row) and resulting quantitative susceptibility maps
(bottom row) of an in vivo 58-year-old subject (left) with a deceased 57-year-old subject
(right). The body temperature of the deceased subject was 23.7 °C at the beginning of the
MRI experiment. Substantially more vessels are visible in the post mortem map because of
the fully deoxygenated blood. The contrast in the images is equal (SHARP phase from — 1
to 1 rad; QSM from — 0.1 to 0.2 ppm).
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Fig. 3. Correlation of bulk magnetic susceptibility with measured iron concentration.
The line represents the regression of all data points and the dotted lines indicate the
95% confidence intervals.

found between chemical iron concentration and bulk magnetic sus-
ceptibility when all regions were included in the analysis (r=0.87,
p<0.001). The correlation remained high when only gray matter
structures were included (r=0.84, p<0.001) and substantially de-
creased when only white matter structures were considered in the
analysis (r=0.27, p<0.001). Including all regions, linear regression
yielded x =0.00097 ppm[Fe] — 0.040 ppm, where [Fe] is the iron
concentration in mg/kg wet tissue mass and the susceptibility value
¥ is again referenced to the mean susceptibility of occipital white
matter. When only including gray matter or white matter regions in
the regression, slopes of 0.00089 ppm/(mg/kg) and 0.00055 ppm/
(mg/kg), respectively, were obtained. Detailed results of the regres-
sion analysis are listed in Table 2.

Discussion

In this study, the relation between iron concentration and magnetic
susceptibility in the human brain was investigated by QSM and induc-
tively coupled plasma mass spectroscopy of post mortem tissue speci-
mens. The results confirmed that the magnetic susceptibility is very
sensitive to variations in iron concentration in the human brain.

The experimentally determined slopes of the linear correlation
functions using all and using only deep gray matter regions are in line
with the susceptibility of ferritin as predicted by theoretical consider-
ations (Schenck, 1992): considering the effective number of Bohr mag-
netons (3.78) and an estimated density of brain tissue of 1.04 g/cm?
(Barber et al., 1970), the paramagnetic contribution of ferritin to the tis-
sue susceptibility may be estimated to be 0.00132 ppm «[Fe] at 36.5 °C.
This agreement between theoretical and experimental findings

Table 2
Results of the linear regression analysis of bulk magnetic susceptibility and measured
iron concentration.

Bulk susceptibility

r Regression slope Regression offset
(ppm per mg/kg wet weight) (ppm)
All structures 0.87  0.00097 4-0.00003 —0.037 4-0.002
Gray matter 0.84  0.00089+ 0.00005 —0.022 +0.006
White matter 0.27  0.0005540.00012 —0.0234-0.005
Theory for - 0.00132 -

ferritin (36.5 °C)

Slope and offset values are given in mean + standard deviation.

The p-values were below 0.001 in all analyses.

r = Pearson regression coefficient.

Regression equation: y = slopexiron concentration (in mg/kg wet tissue) + offset.
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supports the notion that most of the iron in the brain is bound to ferritin
proteins (Hallgren and Sourander, 1958). The slightly smaller suscepti-
bility values (see Table 2) compared to the theoretical values may be
explained by either abundance of iron in chemical forms that are less
paramagnetic (such as oxygenated heme or other low spin iron species)
(Schenck et al., 1992) or by a systematic underestimation of the calcu-
lated susceptibility (Wharton and Bowtell, 2010), which is, however,
only approximately 7% with HEIDL In particular in white matter, the
lower slope might additionally be explained by the high abundance of
diamagnetic myelin (Langkammer et al, 2012; Li et al, 2012;
Schweser et al,, 2011, 2012b): The increased myelin content of white
matter compared to gray matter systematically decreases the suscepti-
bility of the white matter regions and, due to the low mean susceptibility
value of white matter regions, slightly biases the linear fitting. This is
also reflected by the regression offset which was significantly lower
when all structures were considered compared to only white or gray
matter structures (Table 2).

The observed higher correlation coefficient for the deep gray matter
structures compared to the white matter structures was also recently
found when transverse relaxation rate mapping was used for the as-
sessment of brain iron (Langkammer et al., 2010) and may be attributed
to the much broader range of iron concentrations in deep gray matter
(about 4-times higher concentrations). The small variation in iron con-
centration in white matter enhances the relative contribution of con-
founding effects of several other factors. The scattering of the values
is, for example, likely to originate from spatial mismatch of dissected
tissue specimens and analyzed regions in the MR images. The tissue
samples were collected from identifiable anatomic structures and not
based on the magnetic susceptibility maps so that the relatively strong
regional variations of susceptibility values within single nuclei (see
Fig. 4) may have impacted the results. Substances such as deoxygenated
blood, transferrin, hemosiderin, myelin, calcium (Schweser et al., 2010),
and orientation dependency of susceptibility (Denk et al., 2011; Liu,
2010) naturally change the bulk voxel susceptibility, thus, compromising
the correlation with ferritin-bound iron. Iron in transferrin or deoxygen-
ated heme, for example, is in different electronic states with spin quan-
tum numbers of S=5/2 and 4/2, respectively, and thus is more
paramagnetic than iron bound to ferritin, which has an effective spin
quantum number of approximately 3/2 (Schenck, 1992). On the other
hand, iron in white matter is collocated to oligodendrocytes which
play a major role in myelination (Connor and Menzies, 1996). Myelin
and calcium are diamagnetic and thus counteract the effect of iron on
susceptibility (Li et al., 2011; Schweser et al.,, 2011). These factors and
the abundance of other trace elements could modify the measured sus-
ceptibility. The current understanding of the magnetic susceptibility of
brain tissue is still rather limited and thus needs input from histochem-
ical correlation studies. Further work also has to include surrogate

Fig. 4. Regional variations of bulk magnetic susceptibility in the basal ganglia in a 54-
years-old deceased subject. Image contrast is from — 0.1 ppm (red) to 0.25 ppm (yellow).

markers for myelin and should consider white matter fiber orientations
with respect to the main magnetic field to determine this contribution
to the total voxel susceptibility. These will be prerequisites for a more
accurate assessment of iron in highly myelinated regions (Lee et al.,
2010; Li et al., 2012).

The present study was not compromised by changes due to forma-
lin fixation of the brain, which is known to degrade the tissue micro-
structure and consequently changes the MR signal behavior (Dawe et
al., 2009; Schmierer et al., 2008). However, we cannot rule out that a
lower tissue temperature than in vivo as well as some degree of autoly-
sis might have impacted our measurements. Little is known about the
temperature dependence of tissue susceptibility and whether the mag-
netic susceptibilities of white and gray matter exhibit different temper-
ature dependences. For example, the structure of the myelin lipid
bilayer might change with decreasing temperature and proceeding au-
tolysis may affect its diamagnetism. However, the strong correlation
with iron concentration as observed in the present study suggests that
iron induced susceptibility changes dominate other potential contribu-
tions. This is also supported by the visual comparison of post mortem
QSM maps with in vivo QSM maps as exemplarily shown in Fig. 2. De-
spite the stronger visibility of vessels, which may be explained by the
increased abundance of deoxyhemoglobin, no significant changes in
the bulk susceptibility of tissue were observed.

Recent work employing QSM has revealed a substantially increased
cortical gray-white matter contrast in susceptibility maps when com-
pared to magnitude images (Li et al, 2011; T. Liu et al, 2011b;
Schweser et al., 2011). The absence of this pronounced cortical contrast
in our subjects is most likely due to normal aging. To demonstrate me-
thodical developments recent studies mainly relied on young volun-
teers around 30 years. In contrast the mean age of our cohort was
63.5 years, which is an age where cortical gray-white matter contrast
is reduced also in conventional MRI (Salat et al., 2009). The similar ap-
pearance of in vivo and post mortem susceptibility maps and the lack
of cortical contrast even in the SHARP phase images (Fig. 2) demon-
strate that this is neither a limitation of the utilized QSM technique
nor an effect of post mortem changes, but may be ascribed to aging.

When comparing the results of the present QSM study to recently
published work employing the effective transverse relaxation rate R,*,
both techniques revealed similar correlations with iron and, thus, repre-
sent reasonable measures for the assessment of regional iron concen-
trations (Aquino et al, 2009; Langkammer et al., 2010). There are,
however, several substantial differences of magnetic susceptibility
mapping and relaxation rate mapping. First, susceptibility is specific to
other underlying biophysical effects of the tissue composition: Diamag-
netic substances counteract the effect of paramagnetic substances and
therefore influence the resulting bulk susceptibility, whereas the abun-
dance of both substances has an additive effect on the R,* rate, which
confounds interpretation of Ry* particularly in regions with low iron
concentrations such as white matter (Langkammer et al., 2011;
Schweser et al., 2011). Moreover, susceptibility maps can be retrospec-
tively calculated from single-echo GRE measurements that were rou-
tinely acquired in the course of SWI. However, this comes along with
the drawback that QSM only allows determining susceptibility differ-
ences rather than absolute susceptibility values. Due to this relative na-
ture, normalization of the maps with respect to a certain reference
region (occipital white matter in the present study) is required which
may induce minimal susceptibility shifts and may explain the marginal-
ly lower correlation coefficient in this study compared to a related post
mortem validation study where R,* mapping was used (Langkammer et
al.,, 2010). R,* mapping does not require this normalization step and
provides an absolute values but requires a multi-echo GRE sequence.
Multi-echo GRE sequences are readily available in clinical routine, do
not prolong acquisition time, and can serve for both, QSM and R,* map-
ping simultaneously. While relaxation rate mapping is a robust and
established approach that has been applied in a number of clinical studies,
QSM, on the other hand, is a very recent technique and subject to
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ongoing algorithmic improvements which may overcome the current
limitations.

It has to be noted that also the GRE phase, the basis of QSM, itself has
been used as a means to locally assess variations in the magnetic sus-
ceptibility. With the understanding of some limitations due to the
non-local nature of phase this is an efficient and powerful approach
that, unfortunately, has been systematically investigated so far only in
few studies. One recent study demonstrated that by using sub-ROIs of
structures, phase measurements can be compared with each other
and provide valuable information about regional alterations in suscepti-
bility (Walsh and Wilman, 2011). However, it is known that the orien-
tation with respect to the main magnetic field as well as the application
of a high pass filter render the GRE phase a poor direct measure of total
tissue susceptibility (Li et al., 2011; Schweser et al., 2011; Yan et al.,
2012). Therefore, filtered phase was not investigated in this work as it
requires a more detailed analysis including the factors mentioned
above as well as investigation about the influence of different filter
types and kernel sizes.

In summary, quantitative magnetic susceptibility mapping provides
novel information on the intrinsic biophysical tissue properties which
is, to a certain extent, complementary to relaxation rate mapping. It
may, therefore, be expected that the combination of relaxation rate
mapping and QSM will provide further insight and will be instrumental
for disentangling the main contributors yielding an increased accuracy
of measurements of iron concentration and non-iron contributions in
white matter (Langkammer et al., 2011; Schweser et al., 2012a). Future
studies are certainly required to elaborate and compare relaxation rate
mapping and QSM with respect to their sensitivity and accuracy as well
as specificity to the underlying tissue composition and, in particular, for
investigations of pathological conditions.

Conclusion

As this study demonstrates iron represents the dominant source of
magnetic susceptibility in deep gray matter, whereas the counteracting
diamagnetism of myelin and anisotropic susceptibility effects of fiber
bundles are likely to reduce the sensitivity of QSM based iron measure-
ments in white matter. Our results strongly support the finding that
ferritin-bound iron is responsible as the major contributor to the para-
magnetism observed in gray matter (Hallgren and Sourander, 1958),
in good agreement with theoretical predictions by Schenck (1992).
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