7 research outputs found

    Chylothorax after surgery on congenital heart disease in newborns and infants -risk factors and efficacy of MCT-diet

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>To analyze risk factors for chylothorax in infants after congenital heart surgery and the efficacy of median chain triglyceride diet (MCT). To develop our therapeutic pathway for the management of chylothorax.</p> <p>Patients and methods</p> <p>Retrospective review of the institutional surgical database and patient charts including detailed perioperative informations between 1/2000 and 10/2006. Data analyzing with an elimination regression analysis.</p> <p>Results</p> <p>Twenty six out of 282 patients had chylothorax (=9.2%). Secondary chest closure, low body weight, small size, longer cardiopulmonary bypass (242 ± 30 versus 129 ± 5 min) and x-clamp times (111 ± 15 versus 62 ± 3 min) were significantly associated with chylothorax (p < 0.05). One patient was cured with total parenteral nutrition (TPN) and one without any treatment. 24 patients received MCT-diet alone, which was successful in 17 patients within 10 days. After conversion to regular alimentation within one week only one chylothorax relapsed. Out of 7 patients primarily not responsive to MCT-diet, 2 were successfully treated by lysis of a caval vein thrombosis, 2 by TPN + pleurodesis + supradiaphragmatic thoracic duct ligation, one by octreotide treatment, and two patients finally died.</p> <p>Conclusions</p> <p>Chylothorax may appear due to injury of the thoracic duct, due to venous or lymphatic congestion, central vein thrombosis, or diffuse injury of mediastinal lymphatic tissue in association with secondary chest closure. Application of MCT alone was effective in 71%, and more invasive treatments like TPN should not be used in primary routine. After resolution of chylothorax, MCT-diet can be converted to regular milk formula within one week and with very low risk of relapse.</p

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Chylothorax after surgery on congenital heart disease in newborns and infants -risk factors and efficacy of MCT-diet

    No full text
    Objectives To analyze risk factors for chylothorax in infants after congenital heart surgery and the efficacy of median chain triglyceride diet (MCT). To develop our therapeutic pathway for the management of chylothorax. Patients and methods Retrospective review of the institutional surgical database and patient charts including detailed perioperative informations between 1/2000 and 10/2006. Data analyzing with an elimination regression analysis. Results Twenty six out of 282 patients had chylothorax (=9.2%). Secondary chest closure, low body weight, small size, longer cardiopulmonary bypass (242 ± 30 versus 129 ± 5 min) and x-clamp times (111 ± 15 versus 62 ± 3 min) were significantly associated with chylothorax (p < 0.05). One patient was cured with total parenteral nutrition (TPN) and one without any treatment. 24 patients received MCT-diet alone, which was successful in 17 patients within 10 days. After conversion to regular alimentation within one week only one chylothorax relapsed. Out of 7 patients primarily not responsive to MCT-diet, 2 were successfully treated by lysis of a caval vein thrombosis, 2 by TPN + pleurodesis + supradiaphragmatic thoracic duct ligation, one by octreotide treatment, and two patients finally died. Conclusions Chylothorax may appear due to injury of the thoracic duct, due to venous or lymphatic congestion, central vein thrombosis, or diffuse injury of mediastinal lymphatic tissue in association with secondary chest closure. Application of MCT alone was effective in 71%, and more invasive treatments like TPN should not be used in primary routine. After resolution of chylothorax, MCT-diet can be converted to regular milk formula within one week and with very low risk of relapse

    Data from: The genomes of two key bumblebee species with primitive eusocial organisation

    No full text
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    RAD tag (SgrAI) derived SNPs from Bombus impatiens

    No full text
    RAD tag (SgrAI) derived SNPs from Bombus impatiens from Sadd et al. (2015) "The genomes of two key bumblebee species with primitive eusocial organisation

    Data from: The genomes of two key bumblebee species with primitive eusocial organisation

    No full text
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.,RAD tag (SgrAI) derived SNPs from Bombus impatiensRAD tag (SgrAI) derived SNPs from Bombus impatiens from Sadd et al. (2015) &quot;The genomes of two key bumblebee species with primitive eusocial organisation&quot;Filtered_Bombus_imp_AEgenome.vcf,</span
    corecore