10 research outputs found

    The Role of Lycopene in Chronic Lung Diseases

    Get PDF
    Lycopene, a naturally occurring non-provitamin A carotenoid pigment, is responsible for the red to pink colors in tomato, watermelon, red bell peppers, and pink guava. There are many health benefits attributed to lycopene including but not limited to its antioxidant activity. According to the American Lung Association’s State of Lung Cancer, lung cancer is still the leading cause of cancer death in the United States. Other chronic lung diseases such as asthma, emphysema, and chronic obstructive pulmonary disease are high prevalence. This chapter summarizes lycopene’s protective role against lung diseases in both in vitro and in vivo studies. While it has been demonstrated that circulating lycopene can be used as a biomarker for several lung diseases, further studies are warranted to establish that. We aim to provide insights into how lycopene can remedy for lung diseases, including lung cancer

    Investigation into the use of histone deacetylase inhibitor MS-275 as a topical agent for the prevention and treatment of cutaneous squamous cell carcinoma in an SKH-1 hairless mouse model

    Get PDF
    <div><p>Cutaneous squamous cell carcinomas are a common form of highly mutated keratinocyte skin cancers that are of particular concern in immunocompromised patients. Here we report on the efficacy of topically applied MS-275, a clinically used histone deacetylase inhibitor, for the treatment and management of this disease. At 2 mg/kg, MS-275 significantly decreased tumor burden in an SKH-1 hairless mouse model of UVB radiation-induced skin carcinogenesis. MS-275 was cell permeable as a topical formulation and induced histone acetylation changes in mouse tumor tissue. MS-275 was also effective at inhibiting the proliferation of patient derived cutaneous squamous cell carcinoma lines and was particularly potent toward cells isolated from a regional metastasis on an immunocompromised individual. Our findings support the use of alternative routes of administration for histone deacetylase inhibitors in the treatment of high-risk squamous cell carcinoma which may ultimately lead to more precise delivery and reduced systemic toxicity.</p></div

    Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision Repair

    No full text
    Background: Oxidative stress plays a critical role in lung cancer progression. Carotenoids are efficient antioxidants. The objective of this study was to explore the efficacy of all-trans retinoic acid (ATRA) and carotenoids in cigarette smoke-induced oxidative stress within A549 human lung cancer epithelial cells. Methods: A549 cells were pretreated with 1-nM, 10-nM, 100-nM, 1-&mu;M and 10-&mu;M ATRA, &beta;-carotene (BC) and lycopene for 24 h, followed by exposure to cigarette smoke using a smoking chamber. Results: The OxyBlot analysis showed that smoking significantly increased oxidative stress, which was inhibited by lycopene at 1 nM and 10 nM (p &lt; 0.05). In the cells exposed to smoke, lycopene increased 8-oxoguanine DNA glycosylase (OGG1) expression at 1 nM, 10 nM, 100 nM, and 1 &mu;M (p &lt; 0.05), but not at 10 &mu;M. Lycopene at lower doses also improved Nei like DNA glycosylases (NEIL1, NEIL2, NEIL3), and connexin-43 (Cx43) protein levels (p &lt; 0.05). Interestingly, lycopene at lower concentrations promoted OGG1 expression within the cells exposed to smoke to an even greater extent than the cells not exposed to smoke (p &lt; 0.01). This may be attributed to the increased SR-B1 mRNA levels with cigarette smoke exposure (p &lt; 0.05). Conclusions: Lycopene treatment at a lower dosage could inhibit smoke-induced oxidative stress and promote genome stability. These novel findings will shed light on the molecular mechanism of lycopene action against lung cancer
    corecore