18 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Histone H3 K36 Methylation Is Associated with Transcription Elongation in Schizosaccharomyces pombe

    No full text
    Set2 methylation of histone H3 at lysine 36 (K36) has recently been shown to be associated with RNA polymerase II (Pol II) elongation in Saccharomyces cerevisiae. However, whether this modification is conserved and associated with transcription elongation in other organisms is not known. Here we report the identification and characterization of the Set2 ortholog responsible for K36 methylation in the fission yeast Schizosaccharomyces pombe. We find that similar to the budding yeast enzyme, S. pombe Set2 is also a robust nucleosome-selective H3 methyltransferase that is specific for K36. Deletion of the S. pombe set2(+) gene results in complete abolishment of K36 methylation as well as a slow-growth phenotype on plates containing synthetic medium. These results indicate that Set2 is the sole enzyme responsible for this modification in fission yeast and is important for cell growth under stressed conditions. Using the chromatin immunoprecipitation assay, we demonstrate that K36 methylation in S. pombe is associated with the transcribed regions of Pol II-regulated genes and is devoid in regions that are not transcribed by Pol II. Consistent with a role for Set2 in transcription elongation, we find that S. pombe Set2 associates with the hyperphosphorylated form of Pol II and can fully rescue K36 methylation and Pol II interaction in budding yeast cells deleted for Set2. These results, along with our finding that K36 methylation is highly conserved among eukaryotes, imply a conserved role for this modification in the transcription elongation process

    Initial Major Element Quantification Using SuperCam Laser Induced Breakdown Spectroscopy

    No full text
    International audienceSuperCam uses Laser Induced Breakdown Spectroscopy (LIBS) to collect atomic emission spectra from targets up to ~7 meters from the Perseverance rover. Due to the complexity of LIBS physics and the diversity of geologic materials, we use an empirical approach to major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) quantification, based on a suite of 1198 SuperCam laboratory spectra of 334 standards, including the rover calibration targets. SuperCam LIBS spectra are pre-processed by subtracting "dark" (passive/non-LIBS) spectra, denoising, continuum removal, instrument response correction, conversion to radiance, and wavelength calibration. For quantification, the spectra are masked to remove noisy sections of the spectrum and normalized by dividing signal in each spectrometer by the total signal from that spectrometer. We also found that the additional preprocessing steps of peak binning and/or per-channel standardization improved the results in some cases. These data are used to train multivariate regression models, with parameters optimized using cross-validation to avoid overfitting. We considered a variety of regression algorithms including Partial Least Squares (PLS), Least Absolute Selection and Shrinkage Operator (LASSO), Ridge, Elastic Net, Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting Regression (GBR), Local Elastic Net, and blended sub-models. Models were selected based on test-set performance, accuracy of predictions of the onboard calibration targets, comparison of Mars and laboratory spectra, and the geochemical plausibility of Mars results. In some cases we found that the average of the predictions of several algorithms gave better results than any single method. Accuracy of predictions is estimated as the root mean squared error of prediction (RMSEP) for the test set. As additional spectra are collected from Mars, we continue to validate and improve upon this initial SuperCam elemental quantification. Areas of investigation include calibration transfer, probabilistic regression methods, and regression models for additional elements.Figure 1: Test set predictions vs actual compositions for each major element. Perfect predictions would fall on the line. RMSEP measures the accuracy of the model in wt.%

    Initial Major Element Quantification Using SuperCam Laser Induced Breakdown Spectroscopy

    No full text
    International audienceSuperCam uses Laser Induced Breakdown Spectroscopy (LIBS) to collect atomic emission spectra from targets up to ~7 meters from the Perseverance rover. Due to the complexity of LIBS physics and the diversity of geologic materials, we use an empirical approach to major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) quantification, based on a suite of 1198 SuperCam laboratory spectra of 334 standards, including the rover calibration targets. SuperCam LIBS spectra are pre-processed by subtracting "dark" (passive/non-LIBS) spectra, denoising, continuum removal, instrument response correction, conversion to radiance, and wavelength calibration. For quantification, the spectra are masked to remove noisy sections of the spectrum and normalized by dividing signal in each spectrometer by the total signal from that spectrometer. We also found that the additional preprocessing steps of peak binning and/or per-channel standardization improved the results in some cases. These data are used to train multivariate regression models, with parameters optimized using cross-validation to avoid overfitting. We considered a variety of regression algorithms including Partial Least Squares (PLS), Least Absolute Selection and Shrinkage Operator (LASSO), Ridge, Elastic Net, Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting Regression (GBR), Local Elastic Net, and blended sub-models. Models were selected based on test-set performance, accuracy of predictions of the onboard calibration targets, comparison of Mars and laboratory spectra, and the geochemical plausibility of Mars results. In some cases we found that the average of the predictions of several algorithms gave better results than any single method. Accuracy of predictions is estimated as the root mean squared error of prediction (RMSEP) for the test set. As additional spectra are collected from Mars, we continue to validate and improve upon this initial SuperCam elemental quantification. Areas of investigation include calibration transfer, probabilistic regression methods, and regression models for additional elements.Figure 1: Test set predictions vs actual compositions for each major element. Perfect predictions would fall on the line. RMSEP measures the accuracy of the model in wt.%

    Jezero Crater Floor and Delta Chemistry and Mineralogy Observed by SuperCam in the First 1.5 Years of the Perseverance Rover Mission

    No full text
    International audienceJezero crater was chosen for exploration and sample collection by Perseverance due to its history as a lake with river deltas, its diverse mineralogy, including carbonates observed from orbit, and as a potential site to calibrate crater counting ages with radiometric dates of samples to be returned to Earth. This presentation focuses on the results of SuperCam, which uses LIBS for remote elemental chemistry, VISIR and remote Raman spectroscopy for mineral compositions and alteration, includes a microphone, and performs high-resolution imaging for textures and morphology. In the first year after landing, SuperCam and other instruments were used to explore Jezero’s floor. We found that all of the floor units are igneous, with lava flows comprising the upper units as part of the MĂĄaz formation, while the lower formation, SĂ©Ă­tah, is an olivine cumulate, produced by gravitational settling of olivine crystals in a large melt body. Artuby ridge, just outside the SW portion of SĂ©Ă­tah and stratigraphically just above it, contains up to 60% pyroxene. The upper portions of the MĂĄaz formation are more enriched in plagioclase, with the uppermost Ch’al member having the most evolved composition, along with the Content member, pitted rocks directly overlying the main cumulate portion of SĂ©Ă­tah. After exploring the floor, Perseverance drove to the delta formation and began a walk-about style of observations starting at Enchanted Lake, just below an arm of the delta formation, and then moving into Hawksbill Gap, climbing 18 m in elevation between Devil’s Tanyard, Sunset Hill, and Hogwallow flats. Delta compositions initially displayed higher phyllosilicate contents, identified by absorptions at 1.4, 1.9, and 2.3 ”m, and by higher LIBS H peak areas. Farther up, compositions changed to sulfur-bearing in lower locations within the continuous fine-grained light-toned strata (e.g., Pignut Mountain, Sol 463) and carbonate-rich in upper strata. Veins were observed, consisting of Mg-Fe carbonate (Elder Ridge, Sol 459) and anhydrite (Reid’s Gap, Sol 466). The sulfates suggest precipitation of these salts at a later stage, as the lake was evaporating. Carbonates and sulfates in veins in different locations indicate that groundwater was active in the lithified sediments and had significantly different chemistry at different intervals

    Jezero Crater Floor and Delta Chemistry and Mineralogy Observed by SuperCam in the First 1.5 Years of the Perseverance Rover Mission

    No full text
    International audienceJezero crater was chosen for exploration and sample collection by Perseverance due to its history as a lake with river deltas, its diverse mineralogy, including carbonates observed from orbit, and as a potential site to calibrate crater counting ages with radiometric dates of samples to be returned to Earth. This presentation focuses on the results of SuperCam, which uses LIBS for remote elemental chemistry, VISIR and remote Raman spectroscopy for mineral compositions and alteration, includes a microphone, and performs high-resolution imaging for textures and morphology. In the first year after landing, SuperCam and other instruments were used to explore Jezero’s floor. We found that all of the floor units are igneous, with lava flows comprising the upper units as part of the MĂĄaz formation, while the lower formation, SĂ©Ă­tah, is an olivine cumulate, produced by gravitational settling of olivine crystals in a large melt body. Artuby ridge, just outside the SW portion of SĂ©Ă­tah and stratigraphically just above it, contains up to 60% pyroxene. The upper portions of the MĂĄaz formation are more enriched in plagioclase, with the uppermost Ch’al member having the most evolved composition, along with the Content member, pitted rocks directly overlying the main cumulate portion of SĂ©Ă­tah. After exploring the floor, Perseverance drove to the delta formation and began a walk-about style of observations starting at Enchanted Lake, just below an arm of the delta formation, and then moving into Hawksbill Gap, climbing 18 m in elevation between Devil’s Tanyard, Sunset Hill, and Hogwallow flats. Delta compositions initially displayed higher phyllosilicate contents, identified by absorptions at 1.4, 1.9, and 2.3 ”m, and by higher LIBS H peak areas. Farther up, compositions changed to sulfur-bearing in lower locations within the continuous fine-grained light-toned strata (e.g., Pignut Mountain, Sol 463) and carbonate-rich in upper strata. Veins were observed, consisting of Mg-Fe carbonate (Elder Ridge, Sol 459) and anhydrite (Reid’s Gap, Sol 466). The sulfates suggest precipitation of these salts at a later stage, as the lake was evaporating. Carbonates and sulfates in veins in different locations indicate that groundwater was active in the lithified sediments and had significantly different chemistry at different intervals
    corecore