63 research outputs found

    Insights into HLA-G Genetics Provided by Worldwide Haplotype Diversity

    Get PDF
    Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class I genes, located within the major histocompatibility complex (MHC). HLA-G has been the target of most recent research regarding the function of class I non-classical genes. The main features that distinguish HLA-G from classical class I genes are (a) limited protein variability, (b) alternative splicing generating several membrane bound and soluble isoforms, (c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and (e) restricted expression to certain tissues. In the present work, we describe the HLA-G gene structure and address the HLA-G variability and haplotype diversity among several populations around the world, considering each of its major segments [promoter, coding, and 3'untranslated region (UTR)] For this purpose, we developed a pipeline to reevaluate the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It became clear that the overall structure of the HLA-G molecule has been maintained during the evolutionary process and that most of the variation sites found in the HLA-G coding region are either coding synonymous or intronic mutations. In addition, only a few frequent and divergent extended haplotypes are found when the promoter, coding, and 3'UTRs are evaluated together. The divergence is particularly evident for the regulatory regions. The population comparisons confirmed that most of the HLA-G variability has originated before human dispersion from Africa and that the allele and haplotype frequencies have probably been shaped by strong selective pressures.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features

    Get PDF
    Abstract: Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low voxel statistics in regions of interest, increasing the sample size would improve their robustness in clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At 2× SR, the proposed model achieved better perceptual quality with less blurring than the other considered state-of-the-art SR methods, while producing comparable results at 4× SR. We also evaluated the robustness of our model’s radiomic feature in terms of quantization on a different lung cancer CT dataset using Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-based analysis were the most robust features extracted on the GAN-super-resolved images. These achievements pave the way for the application of GAN-based image Super-Resolution techniques for studies of radiomics for robust biomarker discovery

    DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection

    Get PDF
    This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions −336, −332 −201 and −139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that −336A and −139A SNPs were quite common in Asians and that the −201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the −336A variant was more frequent in HTLV-1-infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80 %; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218–5.179). In addition, the −139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95 % CI=0.1954–0.7229) when the HTLV-1-infected patients as a whole were compared with the healthy-control group. These observations suggest that the −139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs −336 and −139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections

    Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil

    Get PDF
    As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2, which is now completed, measured medium-resolution (R=1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa

    Transcriptional and Posttranscriptional Regulations of the HLA-G Gene

    No full text
    HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-gamma and NF-kappa B, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3' UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region
    corecore