69 research outputs found

    The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar

    Get PDF
    Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula 9 Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli

    Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida

    Get PDF
    Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The current assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n=14) containing 32,928 and 36,697 protein-coding genes, respectively. The Petunia lineage has experienced at least two rounds of paleohexaploidization, the older gamma hexaploidy event, which is shared with other Eudicots, and the more recent Solanaceae paleohexaploidy event that is shared with tomato and other Solanaceae species. Transcription factors that were targets of selection during the shift from bee- to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral color patterns and pollination systems. The high quality genome sequences will enhance the value of Petunia as a model system for basic and applied research on a variety of unique biological phenomena

    MINDS. Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI

    Get PDF
    MIRI/MRS on board the JWST allows us to probe the inner regions of protoplanetary disks. Here we examine the disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core. We focus on the H2_2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations. In order to model the molecular features in the spectrum, the continuum was subtracted and LTE slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2_2O lines of different excitation conditions, and the slab model fits were performed individually per region. We confidently detect CO, H2_2O, OH, CO2_2, and HCN in the emitting layers. The isotopologue H218^{18}_2O is not detected. Additionally, no other organics, including C2_2H2_2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2_2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. The OH and CO2_2 emission are relatively weak. It is likely that H2_2O is not significantly photodissociated; either due to self-shielding against the stellar irradiation, or UV-shielding from small dust particles. The relative emitting strength of the different identified molecular features point towards UV-shielding of H2_2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.Comment: Submitted to A&A on May 25 2023. 18 pages, 11 figure

    MINDS. The detection of 13^{13}CO2_{2} with JWST-MIRI indicates abundant CO2_{2} in a protoplanetary disk

    Get PDF
    We present JWST-MIRI MRS spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey (MINDS) GTO program. Emission from 12^{12}CO2_{2}, 13^{13}CO2_{2}, H2_{2}O, HCN, C2_{2}H2_{2}, and OH is identified with 13^{13}CO2_{2} being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few au of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The QQ-branches of these molecules, including those of hot-bands, are particularly sensitive to temperature and column density. We find that the 12^{12}CO2_{2} emission in the GW Lup disk is coming from optically thick emission at a temperature of \sim400 K. 13^{13}CO2_{2} is optically thinner and based on a lower temperature of \sim325 K, may be tracing deeper into the disk and/or a larger emitting radius than 12^{12}CO2_{2}. The derived NCO2N_{\rm{CO_{2}}}/NH2ON_{\rm{H_{2}O}} ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on \textit{Spitzer}-IRS data. This high column density ratio may be due to an inner cavity with a radius in between the H2_{2}O and CO2_{2} snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.Comment: 15 pages, 10 figures. Accepted to ApJ

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    corecore