117 research outputs found

    Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation

    Get PDF
    We discuss the constraints on short‐term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300–4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 10^(17) Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average

    Journal of Geophysical Research: Solid Earth Toward a Global Horizontal and Vertical Elastic Load Deformation Model Derived from GRACE and GNSS Station Position Time Series

    Get PDF
    International audienceWe model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series

    Current plate boundary deformation of the Afar rift from a 3-D velocity field inversion of InSAR and GPS

    Get PDF
    Extension, faulting, and magmatism are the main controls on the magnitude and localization of strain at mid‐ocean ridges. However, the temporal and spatial patterns of such processes are not clear since the strain distribution has not been resolved in the past at sufficient spatial resolution and over extended areas. Interferometric synthetic aperture radar (InSAR) and GPS data with unprecedented resolution are now available to us from the Afar rift of Ethiopia. Here we use a velocity field method to combine InSAR and GPS to form the first high‐resolution continuous three‐dimensional velocity field of Afar. We study an area that is 500 km wide and 700 km long, covering three branches of the Afar continental rift and their triple junctions. Our velocity field shows that plate spreading is currently achieved in Afar in contrasting modes. A transient postdiking deformation is focused at the Dabbahu rift segment, while in central Afar, spreading is distributed over several overlapping segments and southern Afar exhibits an interdiking deformation pattern focused at the Asal–Ghoubbet segment. We find that current spreading rates at Dabbahu, following the 2005–2010 intrusions, are up to 110 mm/yr, 6 times larger than the long‐term plate divergence. A segment‐centered uplift of up to 80 mm/yr also occurs, indicating that magma flow is still a primary mechanism of deformation during postdiking. On the other hand, no vertical displacements are currently observed in central and southern Afar, suggesting lack of significant magmatic activity at shallow levels

    Comment on “Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model” by A. Ayadi et al.

    Get PDF
    International audienceAlthough often difficult to characterize, the relationship between a seismic rupture, its aftershock sequence, and cumulative subsurface or surface faulting or folding is an important challenge to modern seismology and seismotectonics. Among other benefits, it helps document fault length, slip, and magnitude relationships, reconstruct the evolution of the rupture process through historical and prehistorical times and identify the complexity of the deformation in its path toward the surface. This approach is a prerequisite to any seismic hazard assessment but is particularly difficult for faults whose surface trace projects offshore. A specific effort to identify and quantify the source parameters of large earthquakes in coastal areas is therefore needed, not only in subduction zones but also in areas of slow rate and/or diffuse deformation

    Short-term solar forecasting based on sky images to enable higher PV generation in remote electricity networks

    Get PDF
    The integration of a high share of photovoltaic (PV) power generation in remote electricity networks is often limited by the networks’ capabilities to accommodate PV power fluctuations caused by passing clouds. Increasing the share of PV penetration in such networks is accompanied by an increased effort to achieve integration. In the absence of solar forecasting, sufficient spinning reserve must always be provided to cover unforeseen reductions. The expected ramp rates are magnified in small and centralised PV systems and can be in the order of a few seconds. In this study, we investigate the use of a low-cost sky camera for very short-term solar forecasting. Almost 2 months of sky camera data have been recorded in Perth, Western Australia and processed for to provide high-resolution irradiance forecasts based on visible sky images. For performance validation, the capability to provide reliable forecasts under constant clear sky conditions is investigated. During these times, PV generation is expected to be high and reliable, which provides an opportunity to reduce the online spinning reserve often enabling power station operation with one less operating diesel generation. For networks with disconnected diesel generators, we assume that clouds that could reduce the PV generation output have to be predicted at least 2 min before their arrival to have enough time for a diesel generator to start and synchronize with the grid. Therefore, we define an irradiance threshold discriminating between the persistent state of constant clear sky (stays clear) and the non-persistent state (cloud shading event) based on a 2–5 min time horizon. In a binary evaluation, we achieve an overall accuracy of 97% correct forecasts and low 3% false alarms of cloud events indicating a high potential for fuel savings. Focusing on the rare (2% of the time) but more critical non-persistent conditions, we found 8 out of 84 cloud events have not been predicted in advance. Reasons for erroneous forecasts and suggestions for model improvements are provided

    Searching for the Africa-eurasia Miocene Boundary offshore western algeria (Maradja'03 cruise)

    Get PDF
    International audienceWe present new results from the MARADJA'03 cruise depicting the geological structures offshore central and western Algeria. Using swath bathymetry and seismic reflection data, we map and discuss the offshore limits of the Internal Zones corresponding to relics of the AlKaPeCa domain that drifted and collided the African plate during the Miocene. We identify large reverse faults and folds that reactivate part of these limits and are still active today. The morphology of the westernmost NE–SW margin suggests a former strike-slip activity accommodating a westward block translation responsible for the shift of the Internal Zones towards the Moroccan Rif. To cite this article: A. Domzig et al., C. R. Geoscience 338 (2006). Nous prĂ©sentons les rĂ©sultats rĂ©cents de la campagne MARADJA'03, qui visent Ă  mettre en Ă©vidence les structures gĂ©ologiques dans le domaine marin au nord-ouest de l'AlgĂ©rie. GrĂące aux donnĂ©es de bathymĂ©trie multifaisceau et de sismique rĂ©flexion, nous cartographions et discutons les limites en mer des Zones internes correspondant aux reliques du domaine AlKaPeCa qui a dĂ©rivĂ©, puis est entrĂ© en collision avec la plaque africaine au MiocĂšne. De grandes failles inverses et plis, actifs dans le champ de contrainte actuel, rĂ©activent certaines de ces limites. La marge ouest-algĂ©rienne, orientĂ©e NE–SW, indique la prĂ©sence d'une ancienne activitĂ© en dĂ©crochement ayant accommodĂ© la translation des Zones internes vers l'ouest

    Upper mantle temperature and the onset of extension and break-up in Afar, Africa

    Get PDF
    It is debated to what extent mantle plumes play a role in continental rifting and eventual break-up. Afar lies at the northern end of the largest and most active present-day continental rift, where the East African Rift forms a triple junction with the Red Sea and Gulf of Aden rifts. It has a history of plume activity yet recent studies have reached conflicting conclusions on whether a plume still contributes to current Afar tectonics. A geochemical study concluded that Afar is a mature hot rift with 80 km thick lithosphere, while seismic data have been interpreted to reflect the structure of a young, oceanic rift basin above mantle of normal temperature. We develop a self-consistent forward model of mantle flow that incorporates melt generation and retention to test whether predictions of melt chemistry, melt volume and lithosphere–asthenosphere seismic structure can be reconciled with observations. The rare- earth element composition of mafic samples at the Erta Ale, Dabbahu and Asal magmatic segments can be used as both a thermometer and chronometer of the rifting process. Low seismic velocities require a lithosphere thinned to 50 km or less. A strong positive impedance contrast at 50 to 70 km below the rift seems linked to the melt zone, but is not reproduced by isotropic seismic velocity alone. Combined, the simplest interpretation is that mantle temperature below Afar is still elevated at 1450◩C, rifting started around 22–23 Ma, and the lithosphere has thinned from 100 to 50 km to allow significant decompressional melting

    Treatment results for hypopharyngeal cancer by different treatment strategies and its secondary primary- an experience in Taiwan

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The aim of this study was to evaluate treatment results in our hypopharyngeal cancer patients.</p> <p>Patients and Methods</p> <p>A total of three hundred and ninety five hypopharyngeal cancer patients received radical treatment at our hospital; 96% were male. The majority were habitual smokers (88%), alcohol drinkers (73%) and/or betel quid chewers (51%). All patients received a CT scan or MRI for tumor staging before treatment. The stage distribution was stage I: 2 (0.5%); stage II: 22 (5.6%); stage III: 57 (14.4%) and stage IV: 314 (79.5%). Radical surgery was used first in 81 patients (20.5%), and the remaining patients (79.5%) received organ preservation-intended treatment (OPIT). In the OPIT group, 46 patients received radiotherapy alone, 156 patients received chemotherapy followed by radiotherapy (CT/RT) and 112 patients received concomitant chemo-radiotherapy (CCRT).</p> <p>Results</p> <p>The five-year overall survival rates for stages I/II, III and IV were 49.5%, 47.4% and 18.6%, respectively. There was no significant difference in overall and disease-specific survival rates between patients who received radical surgery first and those who received OPIT. In the OPIT group, CCRT tended to preserve the larynx better (p = 0.088), with three-year larynx preservation rates of 44.8% for CCRT and 27.2% for CT/RT. Thirty-seven patients developed a second malignancy, with an annual incidence of 4.6%.</p> <p>Conclusions</p> <p>There was no survival difference between OPIT and radical surgery in hypopharyngeal cancer patients at our hospital. CCRT may offer better laryngeal preservation than RT alone or CT/RT. However, prospective studies are still needed to confirm this finding. Additionally, second primary cancers are another important issue for hypopharyngeal cancer management.</p

    Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes

    Get PDF
    OBJECTIVES The aim of this study was to investigate the clinical outcomes of patients deferred from coronary revascularization on the basis of instantaneous wave-free ratio (iFR) or fractional flow reserve (FFR) measurements in stable angina pectoris (SAP) and acute coronary syndromes (ACS). BACKGROUND Assessment of coronary stenosis severity with pressure guidewires is recommended to determine the need for myocardial revascularization. METHODS The safety of deferral of coronary revascularization in the pooled per-protocol population (n = 4,486) of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation) and iFR-SWEDEHEART (Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve in Patients With Stable Angina Pectoris or Acute Coronary Syndrome) randomized clinical trials was investigated. Patients were stratified according to revascularization decision making on the basis of iFR or FFR and to clinical presentation (SAP or ACS). The primary endpoint was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. RESULTS Coronary revascularization was deferred in 2,130 patients. Deferral was performed in 1,117 patients (50%) in the iFR group and 1,013 patients (45%) in the FFR group (p <0.01). At 1 year, the MACE rate in the deferred population was similar between the iFR and FFR groups (4.12% vs. 4.05%; fully adjusted hazard ratio: 1.13; 95% confidence interval: 0.72 to 1.79; p = 0.60). A clinical presentation with ACS was associated with a higher MACE rate compared with SAP in deferred patients (5.91% vs. 3.64% in ACS and SAP, respectively; fully adjusted hazard ratio: 0.61 in favor of SAP; 95% confidence interval: 0.38 to 0.99; p = 0.04). CONCLUSIONS Overall, deferral of revascularization is equally safe with both iFR and FFR, with a low MACE rate of about 4%. Lesions were more frequently deferred when iFR was used to assess physiological significance. In deferred patients presenting with ACS, the event rate was significantly increased compared with SAP at 1 year. (C) 2018 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Peer reviewe
    • 

    corecore