7 research outputs found

    A new strategy to dissolve long-chain surfactants in water at low temperatures

    No full text
    Surfactants find widespread use in daily life for cleaning purposes and form a vital part of many industrial formulations. So far, their application has been limited to amphiphilic structures with relatively short alkyl chains (typically up to C14 or C16) due to the poor solubility of longer-chain homologues under relevant conditions. Here we introduce a concept that eventually allows octadecyl sulfates and carboxylates to be effectively solubilised in water at room temperature. Through synthesis of alkoxylated derivatives of choline - an abundant molecule of natural origin - we have designed a new class of counterions preventing the precipitation of long-chain surfactants, as commonly observed with alkali ions or unmodified choline. The resulting amphiphilic systems show superior properties with respect to surface activity, which directly translates into enhanced cleaning performance in lab-based washing tests. Studies on the cytotoxicity and biodegradability of the alkoxylated choline derivatives highlight their potential for sustainable surfactant development. In the end, our approach could pave the way towards the use of hitherto unleveraged raw material resources in tailoured surfactant formulations for cleaning applications and beyond

    Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    No full text

    Defining the role of common variation in the genomic and biological architecture of adult human height

    Get PDF
    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    No full text
    corecore