308 research outputs found

    Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions

    Full text link
    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the non-interacting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but non-zero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency, ω\omega, and temperature, TT, is determined by the scaling variable ω/Tp\omega/T^p (where pp is the exponent for the temperature dependence of the inelastic scattering rate) and not by ω/T\omega/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent, pp, and the thermal exponent, zTz_T, in terms of the scaling dimension, −α<0-\alpha < 0, of the interaction strength and the dynamical exponent zz (which has the value z=2z=2), obtaining p=1+2α/zp=1+2\alpha/z and zT=2/pz_T=2/p.Comment: 9 pages, 4 figures, submitted to Physical Review

    What Can Be Learned with an Iodine Solar-Neutrino Detector?

    Get PDF
    We study the potential benefits of an iodine-based solar-neutrino detector for testing hypotheses that involve neutrino oscillations. We argue that such a detector will have a good chance of distinguishing the two allowed regions of Δm2\Delta m^2 -- sin⁡22ξ\sin^22\theta parameter space if neutrino conversion is occurring in the sun. It should also be able to detect seasonal variations in the signal due to vacuum oscillations and might be sensitive enough to detect day/night variations due to MSW transitions in the earth. Although it would need to be calibrated, a working iodine detector could be completed before more ambitious projects that seek to accomplish the same things.Comment: 8 pages, RevTex, 2 uuencoded figures, submittted to Phys. Rev.

    Teacher Ratings of Children's Behavior Problems and Functional Impairment Across Gender and Ethnicity:Construct Equivalence of the Strengths and Difficulties Questionnaire

    Get PDF
    The present study examined construct equivalence of the teacher Strengths and Difficulties Questionnaire and compared mean scores in an ethnically diverse sample of children living in the Netherlands. Elementary schoolteachers completed the Strengths and Difficulties Questionnaire for 2,185 children aged 6 to 10 years of the four largest ethnic groups in the Netherlands, namely native Dutch (n = 684) and Moroccan (n = 702), Turkish (n = 434), and Surinamese (n = 365) immigrant children. Multigroup confirmatory factor analysis suggested the factor structure of the Strengths and Difficulties Questionnaire to be invariant across children's ethnicity and gender. Additionally, the factor structure appeared to be similar for Dutch and Surinamese teachers. However, mean scores on emotional problems, hyperactivity, conduct problems, prosocial behavior, and impairment varied significantly according to ethnicity and gender. Mean scores on peer problems differed significantly for boys and girls, but not across ethnicity. Whether mean differences reflect a method bias or actual differences in classroom behaviors is discussed and needs further research

    Multiple Interactions and the Structure of Beam Remnants

    Full text link
    Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure

    Acoustic Mapping Velocimetry (AMV) for in-situ bedload transport estimation

    Get PDF
    Despite the importance of sediment transport processes in large rivers, the measurement of sed-iment transport rate in the in-situ, especially bedload, is difficult, costly and time consuming using conven-tional methods. In this paper, a novel indirect bedload estimation methodology is presented that is based on the Acoustic Mapping Velocimetry (AMV). AMV is a combination of acoustic and imaging techniques that provides 2D bedform velocity maps. As such, it can only be used if bedload is represented by bedform migra-tion. This paper illustrates the applicability of the bedload estimation method using as test case a section of the Ohio River in the United States. Repeated measurements of the bathymetry provided by multi-beam echo sounder serve as input data for AMV. Cross-sectional distributions of bedload transport rates obtained with AMV are compared with the estimates provided by another non-intrusive technique, ISSDOTv2, developed by the US Army Corps of Engineers. The good agreement between the results with the two different methods is encouraging and suggests further field tests covering a wider range of hydro-morphological situations

    Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector

    Get PDF
    Development of large mass detectors for low-energy neutrinos and dark matter may allow supernova detection via neutrino-nucleus elastic scattering. An elastic-scattering detector could observe a few, or more, events per ton for a galactic supernova at 10 kpc (3.1×10203.1 \times 10^{20} m). This large yield, a factor of at least 20 greater than that for existing light-water detectors, arises because of the very large coherent cross section and the sensitivity to all flavors of neutrinos and antineutrinos. An elastic scattering detector can provide important information on the flux and spectrum of ΜΌ\nu_\mu and Μτ\nu_\tau from supernovae. We consider many detectors and a range of target materials from 4^4He to 208^{208}Pb. Monte Carlo simulations of low-energy backgrounds are presented for the liquid-neon-based Cryogenic Low Energy Astrophysics with Noble gases (CLEAN) detector. The simulated background is much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    • 

    corecore