95 research outputs found

    An online air-sea exchange model framework for trace gases powered by machine- learning

    Get PDF
    The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemicalprocesses controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Long, Mateo C.. National Center for Atmospheric Research; Estados UnidosFil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados UnidosFil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados UnidosFil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados UnidosFil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaAmerican Geophysical Union Fall MeetingSan FranciscoEstados UnidosAmerican Geophysical Unio

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere

    Expression analysis of carbohydrate antigens in ductal carcinoma in situ of the breast by lectin histochemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of breast cancer patients diagnosed with ductal carcinoma <it>in situ </it>(DCIS) continues to grow. Laboratory and clinical data indicate that DCIS can progress to invasive disease. Carbohydrate-mediated cell-cell adhesion and tumor-stroma interaction play crucial roles in tumorigenesis and tumor aggressive behavior. Breast carcinogenesis may reflect quantitative as well as qualitative changes in oligosaccharide expression, which may provide a useful tool for early detection of breast cancer. Because tumor-associated carbohydrate antigens (TACA) are implicated in tumor invasion and metastasis, the purpose of this study was to assess the expression of selected TACA by lectin histochemistry on DCIS specimens from the archival breast cancer tissue array bank of the University of Arkansas for Medical Sciences.</p> <p>Methods</p> <p>For detection of TACA expression, specimens were stained with <it>Griffonia simplicifolia </it>lectin-I (GS-I) and <it>Vicia vilosa </it>agglutinin (VVA). We studied associations of lectin reactivity with established prognostic factors, such as tumor size, tumor nuclear grade, and expression of Her-2/neu, p53 mutant and estrogen and progesterone receptors.</p> <p>Results</p> <p>We observed that both lectins showed significant associations with nuclear grade of DCIS. DCIS specimens with nuclear grades II and III showed significantly more intense reactivity than DCIS cases with nuclear grade I to GS-1 (Mean-score chi-square = 17.60, DF = 2; <it>P </it>= 0.0002) and VVA (Mean-score chi-square = 15.72, DF = 2; <it>P </it>= 0.0004).</p> <p>Conclusion</p> <p>The results suggest that the expression of VVA- and GS-I-reactive carbohydrate antigens may contribute to forming higher grade DCIS and increase the recurrence risk.</p

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    Religious socialization among Malaysian Muslim adolescents: a family structure comparison

    Get PDF
    Despite the plethora of research on correlates of adolescent religiosity, few studies have examined the contribution of socialization factors to adolescent religiosity in the context of non-Western Muslim samples from different family contexts. To address this gap, the current study explored the contribution of parenting (direct socialization) and community engagement (indirect socialization) factors on religiosity among 895 Malaysian Muslim high school students from single-/non-parent and two-parent families. T-test results showed that religiosity was higher for students from two-parent families than single-/non-parent parent homes. After controlling for (a) social desirability, (b) gender and (c) school type, the hypothesized factors of: parental attachment, parental religious socialization, parental supervision, youth organization involvement, school attachment, and mosque involvement significantly predicted religiosity for the full sample of students from both types of families. Hierarchical regression results further revealed that while both indirect and direct parental socialization factors were stronger predictors of religiosity for two-parent families than single-/non-parent families, direct parental socialization effects were more robust. Implications of the findings are discussed

    Understanding why adult participants at the World Senior Games choose a healthy diet

    Get PDF
    BACKGROUND: Identifying those seniors most likely to adopt a healthy diet, the relative importance they place on certain perceived benefits associated with a healthy diet, and whether these perceived benefits are associated with selected demographic, lifestyle, and health history variables is important for directing effective dietary health promotion programs. METHODS: Analyses are based on a cross-sectional convenience sample of 670 seniors aged 50 years and older at the 2002 World Senior Games in St. George, Utah. Data are assessed using frequencies, bivariate analysis, analysis of variance, and multiple logistic regression analysis. RESULTS: Fruit and vegetable consumption was significantly higher in individuals aged 70–79, in women, in those not overweight or obese, and in those with excellent overall health. Dietary fiber consumption was significantly higher in former or never smokers, current and previous alcohol drinkers, in those not overweight or obese, and in those with excellent health. The strongest motivating factors identified for adopting a healthy diet were to improve the quality of life, to increase longevity, and to prevent disease. Of intermediate importance were the need to feel a sense of control and to satisfy likes or dislikes. Least important were the desire to experience a higher level of spirituality, social reasons, and peer acceptance. CONCLUSION: Seniors who have adopted a healthy diet are more likely to have chosen that behavior because of perceived health benefits than for personal and social benefits. Overweight or obese individuals and those in poor health were less likely to be engaged in healthy eating behavior and require special attention by dieticians and public health professionals
    corecore