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Abstract Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the
atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of
acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global
models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate
the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach.
The machine‐learning algorithm is trained using a global suite of seawater acetone measurements.
GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both
model simulations are compared to airborne observations from a recent global‐scale, multiseasonal
campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and
GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well.
The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the
atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while
the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate
acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may
overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate
the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower
stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl
radical production in the tropical upper troposphere/lower stratosphere.

Plain Language Summary Acetone is widely observed in the Earth's atmosphere, with mixing
ratios ranging from parts‐per‐trillion levels in the stratosphere to parts‐per‐billion levels in polluted
regions. Acetone is directly emitted from a wide variety of natural and anthropogenic sources and is also
produced from the photochemical oxidation of a number of precursors. The role of the ocean is complicated;
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acetone is produced in the ocean from the photolysis of colored dissolved organic materials or from
biological processes but is also removed via microbial uptake. Previous studies have found that the direction
and magnitude of oceanic acetone fluxes vary dramatically with seasons and locations. In this work, we
use a data‐oriented machine‐learning approach to predict the surface seawater concentration of acetone,
leveraging in situ acetone measurements in the surface seawater around the globe. This machine
learning‐based approach shows promising potential and can be expanded to the bottom‐up oceanic
emissions of other climate‐relevant compounds.

1. Introduction

Oxygenated volatile organic compounds (OVOCs) influence the oxidative capacity of the atmosphere, affect-
ing its self‐cleaning capacity and hence the fate of pollutants (Monks, 2005). Acetone (CH3COCH3) is one of
the most abundant OVOCs identified in the atmosphere, with mixing ratios ranging from ppt (parts per tril-
lion) levels in the remote atmosphere to ppb (parts per billion) levels in polluted regions. Acetone is directly
emitted into the atmosphere from a variety of natural and anthropogenic sources, including terrestrial eco-
systems (Hu et al., 2013), biomass burning (Holzinger et al., 1999), vehicular exhaust (Kean et al., 2001),
industrial and combustion processes (Singh et al., 1994a), and solvent use (Yuan et al., 2010). Acetone is also
produced from the photochemical oxidation of a number of volatile organic compound (VOC) precursors,
such as terpenes (Lee et al., 2006) and alkanes (Atkinson & Arey, 2003). Major sinks of acetone in the atmo-
sphere include photolysis, oxidation by hydroxyl radicals (OH), and dry deposition (Fischer et al., 2012) (wet
deposition contribution is likely small).

The ocean plays a key role in the global atmospheric budget of acetone. Jacob et al. (2002) showed that to
reconcile existing observations, the ocean must regulate atmospheric acetone both on the global and regio-
nal scale. Jacob et al. (2002) used a global chemical transport model (GEOS‐Chem) with parameterized ocea-
nic acetone emissions. Fischer et al. (2012) included updated (slower) photolysis loss in GEOS‐Chem and
found that with this change to the lifetime of acetone, a large net ocean source is not needed to explain
observed atmospheric mixing ratios. Fischer et al. (2012) proposed that the ocean may both emit or uptake
acetone; the direction and magnitude of the oceanic acetone fluxes show substantive spatial and seasonal
variations. Due to the sparse availability of acetone measurements in the surface seawater, Fischer
et al. (2012) prescribed a fixed surface seawater concentration of acetone (15 nmol L−1), and air‐sea fluxes
of acetone were calculated based on this constant value. Brewer et al. (2017) show that predictions of atmo-
spheric acetone abundances in the tropics and over the Southern Hemisphere oceans are particularly sensi-
tive to uncertainty associated with the concentration of acetone in surface seawater. Over the past decade,
more surface seawater measurements of acetone have become available, with improved spatial and seasonal
coverage (Beale et al., 2013; Dixon et al., 2013, 2014; Hudson et al., 2007; Kameyama et al., 2010; Marandino
et al., 2005; Schlundt et al., 2017; Yang, Beale, et al., 2014; Yang, Blomquist, et al., 2014). Marine acetone
fluxes have been estimated indirectly based on acetone measurements in both the surface seawater and
the overlying atmosphere (Taddei et al., 2009; Zhou & Mopper, 1997). Direct flux measurements have also
been reported using the eddy covariance method (Marandino et al., 2005; Yang, Beale, et al., 2014) and
the near‐surface vertical gradient method (Tanimoto et al., 2014). These observations provide much better
constraints on air‐sea exchange.

The photolysis of acetone leads to the production of hydrogen oxide radicals (HOx = OH + HO2). Due to its
relatively long global atmospheric lifetime (approximately a fewweeks; Fischer et al., 2012; Khan et al., 2015),
acetone may undergo long‐range transport and contribute to the production of peroxyacetyl nitrate (PAN),
an important reservoir of nitrogen oxides (NOx = NO + NO2) (Fischer et al., 2014) and HOx radicals. In par-
ticular, previous studies have proposed that acetone may contribute substantially to HOx production in the
upper troposphere and lower stratosphere, where OH production from ozone (ozone photolysis followed by
the reaction between water vapor and the singlet oxygen atom, O(1D)) is less efficient, due to lower water
vapor concentrations (Arnold et al., 1986, 1997; Jaeglé et al., 2001; Singh et al., 1994, 1995). The temperature
and wavelength dependency of acetone photolysis quantum yield was revisited (Blitz et al., 2004) sincemany
of these earlier studies were published, and it was found that the photolysis of acetone is ~3 times slower
than previously estimated in the upper troposphere. A recent study utilizing sensors mounted on commer-
cial aircrafts with routes between Europe and Asia indicated that in the upper troposphere/lower
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stratosphere the HOx production from acetone, considering the revised acetone photolysis (Blitz et al., 2004),
could still be almost as important as the O3‐O(

1D)‐H2Omechanism (Neumaier et al., 2014). Despite the wide
spatial coverage (35–60°N and 124°W to 142°E), the commercial airlines involved in the study (Neumaier
et al., 2014) sampled relatively polluted regions with high acetone abundances, as indicated by the recent
satellite‐borne acetone retrievals using the Infrared Atmospheric Sounding Interferometer (Franco
et al., 2019). The importance of acetone to HOx production on the global scale, particularly in the remote
atmosphere, may not be directly inferred from that study (Neumaier et al., 2014).

In this work, we revisit the global atmospheric budget of acetone using two global models, the Community
Atmosphere Model with Chemistry (CAM‐chem), and GEOS‐Chem. The CAM‐chem model uses a newly
developed bottom‐up oceanic emission inventory of acetone, with a recently developed online oceanic emis-
sion module (Wang, Hornbrook, et al., 2019) and a novel data‐oriented machine‐learning approach repre-
senting ocean biogeochemistry control over this process (Wang, Kinnison, et al., 2019). The GEOS‐Chem
model uses the configuration of Fischer et al. (2012) for oceanic acetone emissions. Modeling results are eval-
uated using observations obtained from a recent global‐scale, multiseasonal airborne campaign, the
National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The
acetone contribution to HOx production is investigated on a global scale.

2. Methods
2.1. CAM‐Chem Model

CAM‐chem (Lamarque et al., 2012; Tilmes et al., 2015) is the atmospheric component of a widely used
chemistry‐climate model, the National Center for Atmospheric Research (NCAR) Community Earth
System Model (CESM). In this work, CAM‐chem (from CESM2.1.1) is nudged (Tilmes et al., 2015) to the
NASA Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) meteorol-
ogy fields with a horizontal resolution of 0.9° latitude × 1.25° longitude and 56 vertical levels (up to
3 hPa). The chemistry scheme is based on that in CESM2.1.1, which includes a detailed representation of
tropospheric and stratospheric chemistry (Emmons et al., 2020) and an updated monoterpene and isoprene
mechanism (Schwantes et al., 2020). This chemical mechanism includes acetone production from propane,
BIGALK (including butanes and larger alkanes), BIGENE (butenes and larger alkenes), α‐pinene, β‐pinene,
and myrcene, as well as acetone removal by OH oxidation and photolysis. We also tested acetone oxidation
by chlorine radical (Burkholder et al., 2015). The temperature and pressure‐dependent photolysis of acetone
(Blitz et al., 2004) is implemented in CAM‐chem. In this work, CAM‐chem includes anthropogenic emis-
sions from the Coupled Model Intercomparison Project Phase 6 (CMIP6) inventory (Hoesly et al., 2018), bio-
mass burning emissions from the Fire INventory from NCAR (FINN version 1.5; Wiedinmyer et al., 2011),
and biogenic VOC (BVOC) emissions calculated online using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN v2.1; Guenther et al., 2012). Dry deposition velocities in CAM‐chem are calculated
online depending on surface types (more details are given in section 6). In this work, CAM‐chem is
spun‐up for 3 years to remove the effects of initial conditions, and we use simulations from June 2016 to
May 2017 for analysis.

The oceanic fluxes of acetone are calculated using the Online Air‐Sea Interface for Soluble Species
(OASISS) developed for CESM (Wang, Hornbrook, et al., 2019), based on the widely used two‐layer model
framework (Johnson, 2010; Liss & Slater, 1974). In brief, the air‐sea exchange is described by the airside
and waterside transfer velocities (kair and kwater). The kair term is based on the National Oceanic and
Atmospheric Administration (NOAA) COARE algorithm (Jeffery et al., 2010), with the addition of the still
air diffusive flux adjustment (Mackay & Yeun, 1983). The kwater term is based on Nightingale et al. (2000).
This OASISS model framework calculates the bidirectional fluxes of trace gases considering the local phy-
sical state of the ocean (sea surface temperature, salinity, and waves/bubbles) and the atmosphere (tem-
perature, pressure, and wind); the oceanic emissions are fully coupled with the atmospheric chemistry
and dynamics.

The surface seawater concentrations of acetone (monthly climatology with a horizontal resolution of 0.9°
latitude × 1.25° longitude; used to drive the air‐sea exchange) are predicted by an observationally trained
machine‐learning algorithm, trained by in situ surface seawater observations of acetone around the globe.
The machine‐learning approach is described elsewhere (Wang, Kinnison, et al., 2019). In brief, a random
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forest regression algorithm (Breiman, 2001; Pedregosa et al., 2011) is linked to the ocean model and marine
ecosystem model of CESM. The random forest is trained by surface seawater observations (Table 1) and
ocean physical and biogeochemical parameters (independent variables), including sea surface temperature,
salinity, photosynthetically active radiation, nutrients (phosphate, nitrate, iron), oxygen, and chlorophyll
contents in different phytoplankton groups. These ocean physical and biogeochemical parameters are dis-
cussed in Wang, Kinnison, et al. (2019) and references therein. The combination of these independent vari-
ables represents the ocean biogeochemical control. To reduce the chance of overtraining, a fraction of the
entire data set (85%) is randomly sampled as the training data set, and the remaining (15%) is used as testing
data set. Due to the sparse availability of seawater observations, the machine‐learning algorithm produces a
monthly climatology. We show in section 3 that this observationally trained machine‐learning framework
captures the seasonal variations and large‐scale features revealed in the available seawater observations.
The combination of the physics‐based OASISS and the observationally trained machine‐learning algorithm
represent both the physical forcing and the biogeochemistry control on the air‐sea exchange process.

2.2. GEOS‐Chem Model

GEOS‐Chem is a widely used global chemical transport model with a detailed representation of tropospheric
chemistry (Fischer et al., 2012; Jacob et al., 2002; etc.). GEOS‐Chem is driven by the NASA GEOS‐5 assimi-
lated meteorological data. The GEOS‐Chem model used in this work (v11‐02d) is run at a horizontal resolu-
tion of 2.0° latitude × 2.5° longitude and 72 vertical layers (up to 1 Pa). The chemical mechanism used in
these GEOS‐Chem simulations is largely consistent with the basic v11‐02d mechanism, which uses a mono-
terpene oxidation scheme developed by Fisher et al. (2016) but also includes a recently updated isoprene oxi-
dation mechanism (Bates & Jacob, 2019). The temperature and pressure‐dependent photolysis of acetone
(Blitz et al., 2004) is also implemented in this version of GEOS‐Chem. Oceanic emissions of acetone are cal-
culated in the same way as described in Fischer et al. (2012), based on a two‐layer model framework
(Johnson, 2010; Liss & Slater, 1974) but with a constant surface seawater concentration (15 nmol L−1).
The default GEOS‐Chem configuration uses anthropogenic emissions from the Emissions Database for
Global Atmospheric Research (EDGAR) version 4.2, with emissions in certain regions overwritten by regio-
nal emission inventories (details can be found at http://wiki.seas.harvard.edu/geos-chem/index.php/
Emissions_and_Deposition_Working_Group#Recommended_Default_Emission_Inventories). In addition,
GEOS‐Chem uses biomass burning emissions from Global Fire Emission Database (GFED) version 4 (van
der Werf et al., 2017), as well as biogenic emissions fromMEGAN version 2.1 (Guenther et al., 2012). In this
work, the emissions and chemistry time step was set to 20 min; the transport time step was set to 10 min.
GEOS‐Chem uses a fixed dry deposition velocity for acetone (0.1 cm s−1; section 6). GEOS‐Chem is
spun‐up for 1.5 years, and simulations from June 2016 to May 2017 are used for analysis.

2.3. The NASA ATom Campaign

In the present work, the airborne acetonemeasurements from the first and second deployments of the NASA
ATom field campaign (ATom‐1 and ATom‐2) are used for model comparison. ATom‐1 and ATom‐2 took
place July–August 2016 and January–February 2017, respectively. During ATom, the heavily instrumented
NASA DC‐8 aircraft transected the lengths of the Pacific and Atlantic Oceans, regularly profiling from the
marine boundary layer to the upper troposphere/lower stratosphere. During ATom‐1 and ATom‐2, acetone
and other trace gases including hydrogen cyanide (HCN), acetonitrile (CH3CN), propane (C3H8), i‐butane (i‐
C4H10), and n‐butane (n‐C4H10) were measured with the NCAR Trace Organic Gas Analyzer (TOGA) (Apel
et al., 2003, 2015), which uses fast online gas chromatography and mass spectrometry to provide mixing
ratios of a large suite of VOCs. The inlet design and the analytical system of TOGA used for ATom have been
described in detail elsewhere (Wang, Hornbrook, et al., 2019). In addition, O3 and NO were measured using
the NOAANOyO3 four‐channel chemiluminescence (CL) instrument (Ryerson et al., 2000); OH radical mix-
ing ratios were measured using the Pennsylvania State University Airborne Tropospheric Hydrogen Oxides
Sensor (ATHOS) (Faloona et al., 2004); photolysis frequencies for relevant compounds were calculated using
CCD Actinic Flux Spectroradiometers (CAFS) measurements (Shetter & Müller, 1999). Carbon monoxide
(CO) was measured using a Quantum Cascade Laser Spectrometer (QCLS; McManus et al., 2005; Santoni
et al., 2014) and a Picarro analyzer (modified G2401m; Crosson, 2008; Karion et al., 2013). The CO quantity
(CO.X in the merge files) uses Picarro CO data to fill calibration gaps in the QCLS CO measurements, after
subtracting the low‐pass filtered difference between the QCLS and the Picarro measurement. Water vapor
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was measured using a Diode Laser Hygrometer (DLH) (Diskin et al., 2002). All airborne measurements are
from the 2 min TOGA merge products unless otherwise noted.

3. Seawater Concentrations and Oceanic Fluxes of Acetone

Figure 1 shows the surface water acetone concentrations (monthly mean climatology) predicted using the
observationally trained machine‐learning algorithm, compared to ship‐borne observations. As shown in
Figure 1, the machine learning captures the spatial and seasonal variations revealed from the limited sea-

water observational data set reasonably well. The mean absolute percentage error (MAPE ≡
100
n

∑n
i¼1∣

MODi − OBSi
OBSi

∣, where OBSi andMODi denote the individual observations and modeled results, respectively,

and n is the number of samples) of the machine learning‐predicted surface seawater acetone is 12.6%, and

the root‐mean‐square error ( RMSE ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 MODi − OBSið Þ2
N

s
) is 4.8 nmol L−1. The linear correlation

between the observed and predicted surface seawater acetone is shown in supporting information
Figure S1 (slope = 0.89, r = 0.95, n = 436).

The observationally trained machine‐learning algorithm reveals interesting insights. First, of all the inde-
pendent variables used in this work (section 2.1), photosynthetically active radiation is found to be the most
important, which is consistent with previous findings that acetone is produced from photochemical disasso-
ciation of colored dissolved organic matter (CDOM) in the surface seawater (Kieber et al., 1990; Zhou &
Mopper, 1997). Second, elevated acetone is often found in oligotrophic oceans, especially the Northern
Atlantic subtropical gyre, while highly productive regions (e.g., Southern Ocean) are often associated with
low acetone levels. This may be due to enhanced acetone consumption in the productive regions (Dixon
et al., 2013, 2014) and accumulation of acetone in the ocean gyres. As shown in Figure 1, surface seawater
acetone is elevated in the tropical and subtropical Pacific Ocean all year long (>15 nmol L−1). The
high‐latitude oceans show remarkable seasonal variations: Northern Pacific and Atlantic show low surface
seawater acetone in boreal winter (<7 nmol L−1), which is more than doubled in boreal summer (16–
20 nmol L−1). The Southern Ocean shows the same seasonal trend, with elevated surface seawater concen-
trations in austral summer (14–18 nmol L−1) and lower concentrations in austral winter (3–6 nmol L−1).
Note that in general the availability of the seawater acetone observations for the training of the machine
learning is very sparse, especially in the majority of the Pacific Ocean, Indian Ocean, and the
high‐latitude Southern Ocean. Figure 1 implies that a machine‐learning approach holds promising potential
in leveraging existing in situ observations. Future ship‐based studies should target these regions for a better
constraint on the global distribution of the surface seawater acetone; the performance of the
machine‐learning approach can be further improved as more observations become available.

Figure 2 shows the CAM‐chem calculated oceanic acetone fluxes, using the machine learning‐predicted sur-
face seawater acetone concentrations, as well as oceanic acetone flux observations for comparison. The
online air‐sea exchange module is fully coupled with atmospheric dynamics and chemistry; therefore, the

Table 1
Ship‐Based Surface Seawater Acetone Measurements Used to Train the Machine‐Learning Algorithm in This Work

Machine‐learning training data set Region Month(s)

Yang, Blomquist, and Nightingale (2014) Atlantic (50°N to 45°S) October–November
Yang, Beale, et al. (2014) Northern Atlantic (65–40°N) October–November
Dixon et al. (2014) English Channel (50°N) January–November
Beale et al. (2013) Atlantic (50°N to 40°S) October–November
Kameyama et al. (2010) Northern Pacific (49–43°N) August
Hudson et al. (2007) Nordic seas (79–68°N) June
Marandino et al. (2005) Pacific (45–5°N) May–July
Marandino et al., unpublisheda Pacific (2–47°S) January

aAcetone measurements during the Knorr 06 study are not published, but the Knorr 06 study is described elsewhere
(Marandino et al., 2009).
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calculated oceanic fluxes depend on the concentration in the surface atmosphere as well. Note that although
the machine learning‐predicted surface seawater acetone is a monthly climatology, the oceanic and
atmospheric physical parameters that are used to determine the oceanic fluxes (such as sea surface
temperature and meteorology) have interannual variations; therefore, the calculated oceanic emission
fluxes can also have interannual variations (driven by the physical forcing in the ocean and the
atmosphere). However, for the studied period (2013–2017), interannual variability in predicted oceanic
acetone fluxes are not large on a global scale. As shown in Figure 2, the modeled and observed oceanic
fluxes, although in different years, show consistent large‐scale features. For instance, the Northern Pacific
and Atlantic Oceans are a large net sink for acetone in boreal winter; there is a high abundance of
acetone in continental outflows from the polluted regions (e.g., Asia and North America) that passes over
cold water (Henry's law constant increases with decreasing temperature). The tropical and subtropical
oceans, on the other hand, are generally a net source for acetone, except for the deep tropics (10°N to
10°S) in boreal summer, where acetone from continental sources (especially from the biogenic sources in
the Amazon) shows a stronger tendency to deposit into the ocean. We performed a tagged CAM‐chem simu-
lation to investigate the contribution of biogenic sources of acetone. As shown in Figure S2, biogenic acetone
(including primary emission calculated by MEGAN and secondary production from terpenes) reached up to
400 ppt in the marine boundary layer over the deep tropical Pacific (10°N to 10°S) in summer and fall (June–
November), nearly two thirds of the total modeled acetone. This plume of biogenic acetone largely drives the
downward flux over the deep tropical Pacific (10°N to 10°S).

Spatial variations in the net fluxes in Figure 2 show similarity to those presented in Fischer et al. (2012),
despite their adoption of a single surface seawater acetone concentration. Section S1 in the supporting infor-
mation provides more details on the similarity to Fischer et al. (2012) and the possible reasons behind it.
Note that the magnitude of the fluxes in certain regions appear to be underestimated by the CAM‐chem
model. For example, larger downwardfluxeswere reported over theNorthern Pacific (Marandino et al., 2005)
and Northern Atlantic (Yang, Beale, et al., 2014), while the modeled fluxes in the same seasons and regions
are smaller. This may be due to interannual variability (observations and the model represent different

Figure 1. Machine learning‐predicted monthly climatology of the surface seawater concentration of acetone grouped in different seasons (background),
ship‐based surface seawater acetone observations (colored dots) from the literature (Table 1).
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years), uncertainties in the air‐sea exchange model (uncertainty on the order of 100%; Carpenter &
Nightingale, 2015; Johnson, 2010) or an underestimation of acetone in the continental outflows from the
more polluted regions (such as Asia and North America). We discuss this further in section 4 via a compar-
ison of vertical profiles. Figure 2 also shows that there are large regions in the tropics and over the Southern
Hemispheric Pacific, Indian Ocean, and high‐latitude Southern Ocean where there are no comparable
observations. Oceanic acetone flux measurements in these regions are highly desirable, especially flux mea-
surements using advanced techniques such as the eddy covariance method. Overall, our approach of using
an observationally trained machine‐learning algorithm to represent the ocean biogeochemistry control on
the air‐sea exchange of trace gases is a promising alternative of the highly simplified parameterization in
Earth system models.

4. Comparison to the Airborne Observations During ATom

In this section, we compare both CAM‐chem (with and without oceanic acetone fluxes) and GEOS‐Chem
(with oceanic acetone fluxes) modeled vertical profiles of acetone in the remote troposphere in different
regions over the Pacific and Atlantic to airborne observations from the ATom‐1 (July–August 2016) and
ATom‐2 (January–February 2017) campaigns. The modeling outputs are sampled along the flight tracks
unless otherwise noted. The flight tracks (over the oceans only) for ATom‐1 and ATom‐2 are given in
Figure 3, as well as the CAM‐chem and GEOS‐Chem modeled monthly mean total acetone columns in
August 2016 and February 2017. The large‐scale features in the total acetone column are very similar
between the two models. Both models predict elevated acetone column over the Amazon and Africa, due
to the primary acetone emissions from the terrestrial ecosystem and the photochemical production from
BVOCs. In addition, the models also predict elevated acetone columns over East Asia and North America
from anthropogenic emissions of hydrocarbons (mainly alkanes). The measured and model predicted

Figure 2. CAM‐chem predicted net oceanic fluxes of acetone in different seasons (background), using the machine learning‐predicted surface seawater
concentration, as well as oceanic acetone flux measurements (colored dots) from the literature (Marandino et al., 2005; Tanimoto et al., 2014; Yang, Beale,
et al., 2014; Yang, Blomquist, & Nightingale, 2014). Net oceanic acetone fluxes in each season are given in boxes, with negative values represent net
downward fluxes. Note the color bar is in log scale.

10.1029/2020JD032553Journal of Geophysical Research: Atmospheres

WANG ET AL. 7 of 23



vertical profiles are shown in Figure 4 (ATom‐1) and Figure 5 (ATom‐2). During ATom‐1 and ATom‐2, both
OH radicals and the photolysis frequency of acetone are well captured by the models (Figure S3).

4.1. ATom‐1: July–August 2016

During ATom‐1 (July–August 2016), the acetone observations over the remote Pacific and Atlantic Oceans
show remarkable spatial variation, with maximum acetone mixing ratio as high as ~2.4 ppb in the remote
atmosphere. We now elaborate the observations and modeling results in different regions:

i Over the Northern Hemispheric Pacific and Atlantic, observed acetone levels span a wide range, with
peak values as high as ~2.4 ppb. This is mainly due to the elevated acetone mixing ratios in the continen-
tal outflow from Asia and North America (as indicated by CO, Figure S4). CAM‐chem underestimates
acetone in the Northern Hemisphere continental outflow by up to a factor of ~2 (Figures 4a and 4e).
CO is reasonably well captured by CAM‐chem over the Northern Hemispheric Pacific but is underesti-
mated by up to ~1/3 over the Northern Hemispheric Atlantic (Figures S4a and S4e). With or without
oceanic acetone fluxes, CAM‐chem simulations do not show large discrepancies over the Northern
Hemispheric Ocean during the ATom‐1 period (Figure 4). GEOS‐Chem acetone is in better agreement
with observations in the Northern Hemisphere. CAM‐chem in this work uses CMIP6 anthropogenic
emissions. The CAM‐chem results suggest that the CMIP6 emission inventory may underestimate the
emissions of acetone and/or its precursors in the Northern Hemisphere. For instance, CAM‐chem mod-
eled propane (C3H8), an important precursor of acetone, is a factor of 2.6–5.0 lower than the TOGAmea-
surements in the Northern Hemisphere. Similar model underestimation (CAM‐chem) of lower
tropospheric acetone was reported in the Northern Hemisphere (Emmons et al., 2020), which is

Figure 3. CAM‐chem and GEOS‐Chem predicted total acetone columns in August 2016 and February 2017, as well as ATom flight tracks over the ocean. Dashed
boxes denote the different oceanic regions roughly based on the oceanic acetone fluxes in Figure 2; the oceanic regions defined based on air‐sea exchange of
acetone shift with season. A: Northern Hemisphere Pacific (7–60°N for ATom‐1 and ATom‐2). B: Tropical Pacific (7°N to 5°S for ATom‐1 and 7°N to 18°S for
ATom‐2). C: Southern Hemisphere Pacific (5–25°S for ATom‐1 and 18–40°S for ATom‐2). D: Southern Ocean Pacific (25–80°S for ATom‐1 and 40–80°S for
ATom‐2). E: Northern Hemisphere Atlantic (7–65°N for ATom‐1 and 20–65°N for ATom‐2). F: Tropical Atlantic (7°N to 10°S for ATom‐1 and 20°N to 10°S
for ATom‐2). G: Southern Hemisphere Atlantic (10–40°S for ATom‐1 and ATom‐2). H: Southern Ocean Atlantic (40–80°S for ATom‐1 and ATom‐2).
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Figure 4. Regional vertical profiles of acetone during ATom‐1. Gray points are discreet observations, and black circles
and error bars show medians and quartiles of observations. Predicted median model results are shown in red
(CAM‐chem with no oceanic fluxes), blue (with oceanic fluxes), and green (GEOS‐Chem). (a)‐(h) represent
different regions (Figure 3).
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Figure 5. Regional vertical profiles of acetone during ATom‐2. Gray points are discreet observations, and black circles
and error bars show medians and quartiles of observations. Predicted median model results are shown in red
(CAM‐chem with no oceanic fluxes), blue (with oceanic fluxes), and green (GEOS‐Chem). (a)‐(h) represent
different regions (Figure 3).
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possibly because of underestimated or unaccounted sources of acetone precursors (such as leakage from
the oil/gas industry; Jacob et al., 2002; Pétron et al., 2014). Backward trajectory analysis (https://espo.
nasa.gov/atom/archive/browse/atom/DC8/BackTraj) suggests that in August 2016, the low troposphere
(below 5 km) air masses probed over the Northern Hemispheric Pacific mostly originated from North
America and East Asia. The anthropogenic emission inventories of acetone and its precursors show
remarkable difference between GEOS‐Chem and CAM‐chem: GEOS‐Chem anthropogenic emissions
of propane (EDGAR 4.2, with emissions in certain regions overwritten by regional inventories) is nearly
2 times higher than the anthropogenic emissions of propane used in CAM‐chem (CMIP6) in North
America and East Asia; GEOS‐Chem anthropogenic acetone emissions in North America and East
Asia are approximately 11 and 4.6 times higher than CAM‐chem, respectively. In light of the model
underestimation in the Northern Hemisphere Pacific, a thorough evaluation of the emission inventories
in the source regions (especially Asia and North America) is needed, which is beyond the scope of this
work since the ATom mission is not aiming at polluted regions.

ii Over the tropical Pacific, both CAM‐chem and GEOS‐chem overestimate acetone in the marine bound-
ary layer by a factor of ~2 (Figure 4b). Both models use MEGAN for emissions from the terrestrial eco-
system. As discussed in section 3, a tagged CAM‐chem simulation indicated that biogenic acetone
contributes substantially in the lower troposphere over the tropical Pacific (Figure S2). CAM‐chem with
the oceanic acetone fluxes improves acetone predictions in the marine boundary layer (Figure 4b).
Therefore, it appears that MEGAN may be overestimating the terrestrial emissions of acetone and/or
other precursor BVOCs in the Amazon region.

iii Over the tropical Atlantic, a biomass burning plume from Africa is observed between 2 and 4 km, with
CO up to ~250 ppb (Figure S4f) and HCN and CH3CN up to ~1 ppb and 0.5 ppb, respectively (HCN and
CH3CNmeasurements can be found inWofsy et al., 2018). Neither CAM‐chem nor GEOS‐Chem capture
the elevated CO in the biomass burning plume, yet both models can capture the observed acetone verti-
cal profile reasonably well (within the spreads in observations, Figure 4f), implying relatively small bio-
mass burning contribution to the atmospheric acetone or the biomass burning emissions of acetone or of
its precursors might be overestimated in the models.

iv Over the Southern Hemispheric Oceans, observed acetone is lower than that in the Northern
Hemisphere. GEOS‐Chem tends to overestimate acetone in the Southern Hemisphere, while
CAM‐chem better captures the observed acetone especially in the lower troposphere over the
Southern Ocean (Figures 4c, 4d, 4g, and 4h). The overestimate of acetone in GEOS‐Chem over the
Southern Ocean is likely due to the higher seawater acetone in GEOS‐Chem (15 nmol L−1) than that pre-
dicted by the machine‐learning algorithm (<8 nmol L−1, Figure 1). In general, the Southern
Hemisphere, including the Southern Ocean, experience less anthropogenic influences compared to the
Northern Hemisphere and hence are more sensitive to natural processes, especially air‐sea exchange.
The better performance of CAM‐chem over this region indicates that the oceanic biogeochemistry con-
trol represented by the machine‐learning approach provides improved predictability for the CESM
model framework. Interestingly, over the Southern Ocean, observed acetone shows clear depletion
(<20 ppt) above 5–6 km, while both CAM‐chem and GEOS‐Chem predict >300 ppt acetone in this region
(Figures 4d and 4h). This will be further explored in section 5.

4.2. ATom‐2: January–February 2017

During ATom‐2, the observed acetone spans a relatively narrower range (up to ~1.5 ppb) than that during
ATom‐1. (i) Over the Northern Hemispheric Pacific and Atlantic, observed acetone shows a clear vertical
gradient in the marine boundary layer, which increases with increasing altitude. This implies the
Northern Hemispheric oceans are a net sink for acetone in boreal winter, consistent with the CAM‐chem
predicted oceanic acetone fluxes (Figure 2). (ii) Over the tropical Pacific, the ocean is a net source for acetone
(Figure 2), and GEOS‐Chem and CAM‐chem with oceanic acetone fluxes both well capture the acetone ver-
tical profiles. (iii) Over the tropical Atlantic, the aircraft encountered another biomass plume between 1 and
4 km, with CO up to ~200 ppb (Figure S5f) and HCN up to ~700 ppt. Both models fail to capture the observed
acetone and CO in this biomass burning plume (up to 1.5 ppb; Figures 5f and S4f). (iv) In the Southern
Hemisphere, observed acetone in the marine boundary layer decreases with increasing altitude, implying
that the Southern Hemispheric oceans in the austral summer are a net source of acetone, consistent with
the modeled oceanic acetone fluxes (Figure 2). GEOS‐Chem largely captures the observed acetone vertical
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profile over the Southern Hemispheric oceans (Figures 5c and 5g). CAM‐chem without oceanic acetone
fluxes underestimates acetone in the lower troposphere by a factor of ~3; the online oceanic acetone fluxes
improve the CAM‐chem predictions in the Southern Hemisphere lower troposphere but still fall short of the
measurements by a factor of 2 over the Atlantic (Figures 5c and 5g). Over the Southern Ocean, CAM‐chem
with oceanic acetone fluxes yields overall best agreement with observations, while GEOS‐Chem tends to
overestimate acetone in the marine boundary layer (Figures 5d and 5h).

To sum up, we use combined observational (TOGA measurements) and modeling (CAM‐chem and GEOS‐
Chem) analysis to investigate the role of ocean in determining atmospheric acetone abundances over the
remote oceans. As discussed above, the role of ocean in the atmospheric budget of acetone shows consider-
able spatial variation. Globally, the online oceanic acetone fluxes improve CAM‐chem acetone predictions in
the marine boundary layer (<2 km), with the mean absolute percentage error reduced from 65% to 40% dur-
ing ATom‐1 and 55% to 30% during ATom‐2, with a mean root square error of 0.14–0.39 ppb (Table S1).
GEOS‐Chem, using the same oceanic acetone configuration as in Fischer et al. (2012) but with updated iso-
prene andmonoterpene chemistry, produces a mean absolute percentage error of 75% and 41% in themarine
boundary layer during ATom‐1 and ATom‐2, respectively, with a mean root square error of 0.15–0.43 ppb
(Table S1).

5. Large Discrepancy Between the Modeled and Measured Acetone Near the
Tropopause Over Southern Ocean

We now come back to the unexpected model‐observation discrepancy on acetone above 5–6 km over the
Southern Ocean during ATom‐1 (Figures 4d and 4h). During these two flights (12 and 15 August 2016),
the observed median acetone ranges from 80 to 125 ppt below 5 km, and the CAM‐chem modeled acetone
ranges from 80 to 185 ppt, while GEOS‐Chem predicts >200 ppt throughout (Figures 4d and 4h). Above
5 km, the observed median acetone decreases strongly with increasing altitude, from 125 ppt at 5 km to
<30 ppt above 8 km. Both models fail to capture the observed altitude dependency above 5 km, consistently
predicting >200 ppt acetone in this region. The model‐measurements discrepancy is further shown in the
interpolated curtains in Figure 6 (and Figure S6): CAM‐chem predicts >180 ppt acetone that is widespread
between 40°S and 70°S, extending from lower troposphere (2 km) all the way to the lowermost stratosphere
(13 km); yet observed acetone in this region remains below 200 ppt. Such acetone overestimation is not seen
in the Northern Hemisphere, possibly due to the higher acetone abundance in the Northern Hemisphere.
Four reasons may be responsible for the widespread model overestimation of acetone in the Southern
Hemisphere in cold seasons: (i) uncertainties in the acetone chemistry (chemical production/removal);
(ii) uncertainties in large‐scale transport; (iii) overestimation in the source region; and (iv) missing removal
processes. We can rule out some of these reasons which are discussed as follows.

5.1. Uncertainties in the Acetone Chemistry

Localized acetone production in the model is unlikely to be significant, since the atmosphere over the
Southern Ocean remains mostly dark during austral winter, and major acetone precursors remain low in
this region. For instance, during ATom‐1 above 6 km over the Southern Ocean, the TOGA measured pro-
pane, i‐butane, and n‐butane are 31 ± 12, 2.8 ± 1.2, and 3.8 ± 1.6 ppt, respectively (limits of detection
[LOD]: 20, 0.5, and 1.0 ppt for propane, i‐butane, and n‐butane, respectively. Data below LOD are replaced
by two thirds of the LOD). α‐Pinene remains below its LOD (0.1 ppt) at all times. Photochemistry in the
atmosphere is a major sink of acetone, including OH oxidation, photolysis, and reaction with chlorine
atoms. The OH and photolysis sinks of acetone are both well captured by the models (Figures S3, S7, and
S8); therefore, OH oxidation and photolysis appear to be unlikely culprits for the missing acetone depletion
in the models. Chlorine oxidation appears to be plausible, as indicated by the unique chemical signature in
Figure 7 (TOGA observed i‐butane/n‐butane ratio vs. i‐butane/propane ratio). Propane and butanes are
often coemitted from anthropogenic sources (e.g., oil and gas industry, fuel evaporation, Jacob et al., 2002
and references therein). i‐Butane and n‐butane have similar OH reactivities (within 9% between 200 and
300 K), yet the chlorine reactivity of n‐butane is 44–46% higher than that of i‐butane between 200 and
300 K (Burkholder et al., 2015). On the contrary, i‐butane and propane have similar chlorine atom reactiv-
ities(<3% between 200 and 300 K) but very different OH reactivities (a factor of 2–3.5 between 200 and 300 K)
(Burkholder et al., 2015). Therefore, if the data points in Figure 7 are spread out horizontally on this
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ratio‐ratio plot, it implies OH oxidation dominates the aging process of the air mass. However, where the
data points are spread vertically, deviating from the horizontal cluster implies a possible influence of
chlorine chemistry. Figure 7 implies that, during these two ATom‐1 flights over the Southern Ocean, the
observed acetone depletion may be associated with chlorine chemistry signature, or any process that is
co‐located with chlorine chemistry. Both CAM‐chem and GEOS‐Chem include the chlorine oxidation of
acetone (Burkholder et al., 2015), which cannot explain the acetone depletion observed in the lower
stratosphere over the Southern Ocean during ATom‐1 due to its slow rate and the low chlorine radical
concentrations in the Southern Hemisphere in this season. The tropospheric and stratospheric halogen
chemistry in CAM‐chem has been evaluated extensively in the literature (Fernandez et al., 2014; Navarro
et al., 2015, 2017; Saiz‐Lopez & Fernandez, 2016; Saiz‐Lopez & von Glasow, 2012; Wang, Kinnison,
et al., 2019), as has the tropospheric halogen chemistry in GEOS‐Chem (Parrella et al., 2012; Schmidt
et al., 2016; Sherwen et al., 2016; Wang, Jacob, et al., 2019). A CAM‐chem sensitivity test with 100 times
faster Cl + acetone rate coefficient and another 4 year spin‐up still cannot explain the observed acetone
depletion. Therefore, the chlorine signature as revealed in Figure 7 implies the acetone depletion may be
partially related to stratospheric processes (where chlorine chemistry is active), but is unlikely to be due
to direct chlorine oxidation of acetone. To sum up, the combined observational and modeling analysis
implies that the persistent model overestimation of acetone in this region is unlikely to be due to
uncertainties in modeled photochemistry.

Figure 6. Interpolated meridional curtains of measured (top) and CAM‐chem predicted (bottom) acetone during the southbound leg over the Pacific Basin
during ATom‐1 (corresponding to Regions A–D in Figure 3). The gray dots represent the flight tracks, and the black dots represent the tropopause height.
The dashed gray lines denote the isentropes and the heavy black lines denote the jet stream.
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5.2. Uncertainties in the Large‐Scale Transport

During austral winters, the southern high‐latitude air mass in the upper
troposphere is influenced by the interplay of two large‐scale processes.
One is the downward transport from the stratosphere driven by the sea-
son's strong polar vortex descent, and the other is the isentropic mixing
from low latitudes driven by the poleward Rossby wave breaking. To
examine the model representation of transport and large‐scale circulation,
two specific diagnostics were performed, and the results are shown in
Figure 8 (also Figures S7 and S8) and an animation in the supportingmate-
rial (Movie S1).

Figure 8 shows a diagnostic of troposphere‐stratosphere transition using
tracer‐tracer relationship. The O3‐CO and O3‐H2O relationships are most
commonly used pairs (Hoor et al., 2002; Pan et al., 2004, 2007). The
stratosphere‐influenced air (i.e., a mixture of tropospheric air and subsid-
ing stratospheric air) sampled by the aircraft is characterized by elevated
O3 (~100 ppb) and low water vapor (H2O < 40 ppm). Figure 8
(Figures S7 and S8) shows that CAM‐chem reproduced the observed rela-
tionships between the stratospheric tracer (O3) and tropospheric tracers
(H2O and CO) which demonstrate the overall good model representation
of the large‐scale circulation. The stratosphere‐influenced air (200–
280 hPa) probed during these two flights contains 45–65 ppb CO, consis-
tent with the CO measurements reported in the lowermost stratosphere

but certainly toward the upper end (de Reus et al., 2003). The tropopause locations and the structures are
also reasonably well captured by the CAM‐chem (Figure S7 and S8). The modeled and observed acetone ver-
sus O3/CO relationships, on the other hand, are drastically different in the tropopause region (Figure 8). CO,
O3, and H2O in this region are reasonably well captured by the models (Figure 8, Figures S4d, S4h, S7, and
S8), indicating that the large‐scale circulation (Brewer‐Dobson circulation) are well represented by the
model, and hence the model overestimate of acetone is unlikely due to uncertainties in the model transport
or large‐scale descent.

Additional diagnostic of large‐scale transport from isentropic mixing is shown by CAM‐chem models' O3

and acetone evolution on the 310 and 320 K potential temperature surface for the observation period. As
indicated in Figure 6, these isentropes represent the lower troposphere in the subtropics and the tropopause
region in the high latitudes. The two animations, using O3 as a transport tracer, highlight the active isentro-
pic transport contribution to the tropopause level acetone in the Southern high latitude from the subtropical
lower troposphere. This transport behavior is consistent with the dynamical analysis of the region where
active poleward Rossby wave breaking during austral winter was identified (Peters & Waugh, 2003).
These wave‐breaking activities are responsible for trace gas transport to the tropopause region as indicated
by the low PV streamers (Movies S1 and S2).

The two diagnostics remove the model deficiency of representing large‐scale transport as the cause for acet-
one high bias in the southern high‐latitude UTLS (upper troposphere/lower stratosphere). The result, how-
ever, pointed out that the isentropic mixing is responsible for modeled high acetone in the tropopause
region, indicating either the overrepresentation of subtropical acetone source or the missing removal pro-
cesses in the cold polar tropopause region are the directions of further investigation.

Acetone measurements in the upper troposphere/lower stratosphere have been reported in the literature
(Arnold et al., 1986; Singh et al., 2000); generally acetone in the stratosphere decreases strongly with increas-
ing ozone (Scheeren et al., 2003; Singh, 2004). de Reus et al. (2003) examined the relationship between acet-
one and CO for a number of air mass types in a number of airborne campaigns and found systematically
lower acetone/CO ratio in the lowermost stratosphere (compared to tropospheric air masses), due to “the
increased photolytic loss of acetone and the decreasing OH concentration with altitude.”However, the acet-
one removal processes near the tropopause has not been quantitatively examined in previous studies, espe-
cially in the high‐latitude regions during winter. The large discrepancy of modeled and observed acetone in
the upper troposphere may imply a currently missing acetone sink in the lower stratosphere, although we

Figure 7. TOGA measured i‐butane/n‐butane ratio versus i‐butane/
propane ratio during the flights over the Southern Ocean during ATom‐1.
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cannot rule out the possibility that acetone may be overestimated in the source regions, which will be
elaborated in the following section.

5.3. Acetone Overestimation in the Source Regions

As shown in Figures 6 and S6 and Movie S1, the rapid isentropic transport connects the tropical/subtropical
regions with the high‐latitude regions. Therefore, we identify the tropical/subtropical (20°S to equator)
midtroposphere/upper troposphere (5–12 km) as the potential source regions of the upper troposphere over
the Southern Ocean, where large model‐measurement disagreement is observed. Although the large‐scale
circulation and transport is well capture by the models (section 5.2), any overestimation of acetone in the
source region may lead to an overestimation of acetone in the upper troposphere/lower stratosphere in
the high‐latitude regions. As shown in Figure 6, the observed acetone level in the tropical/subtropical
midtroposphere/upper troposphere (150–350 ppt) over the Pacific Basin are only slightly overestimated by
CAM‐chem (200–450 ppt); however, Figure S6 shows that CAM‐chem overestimates acetone in the subtro-
pical midtroposphere over the Atlantic Basin (500–900 ppt) relative to observations (400–600 ppt). It appears
that acetone is indeed overestimated in the source regions. The driver of the acetone overestimation in the
source regions, and the degree to which such overestimation in the lower latitude regions affect the acetone
transport and accumulation in the high‐latitude regions, will be investigated in a separate work.

Figure 8. Tracer‐tracer relationships over the Southern Ocean Pacific during 12 August 2016: (a) O3 versus CO; (b) O3
versus H2O; (c) O3 versus acetone; and (d) acetone versus CO. airborne observations are shown as filled circles, color
coded by the pressure altitude (tropopause: ~330 hPa). Flight track is given as a solid line in the embedded map in Panel
(b). CAM‐chem modeling results are shown as black dots. Note that CAM‐chem modeling results in this figure are
sampled in the dashed region in the embedded map, not along the flight track.
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To sum up, the large discrepancy of modeled and observed acetone in the upper troposphere/lower strato-
sphere over the Southern Ocean is unlikely due to known photochemistry or large‐scale transport but likely
due to currently missing removal processes or acetone overestimation in the tropical/subtropical tropo-
sphere. Notably, this is not an episodic event. We have examined WACCM model (similar to CAM‐chem
but extends in altitude to the lower thermosphere) outputs for previous years, and the meridional curtains
always show similar acetone “hot spots” in this region during austral winter. Similar results are consistently
seen in GEOS‐Chem, and the atmospheric component of the Geophysical Fluid Dynamics Laboratory
coupled model (GFDL AM4.1, V. Naik and J. He, NOAA/GFDL, personal communication, December
2019), despite the very different treatment of chemistry and physics among these models. The impacts of
such model high bias remain unclear and will be further investigated in a separated manuscript.
However, the high model bias is unlikely to affect the HOx budget over the Southern Ocean, since acetone
contributes to HOx production mainly in the tropics and subtropics (section 7).

6. Global Budget of Acetone

The global atmospheric budget of acetone calculated using both CAM‐chem and GEOS‐Chem is shown in
Figure 9. The global burden of acetone calculated by CAM‐chem is 3.5 Tg, very similar to that calculated
using GEOS‐Chem (3.8 Tg). The global atmospheric lifetime of acetone against all sinks is estimated to be
11.0 and 12.7 days by CAM‐chem and GEOS‐Chem, respectively. In this work, we calculate the global atmo-
spheric lifetime of acetone against all its chemical and physical sinks; for the ocean uptake, the gross uptake
term is included, consistent with previous studies (Brewer et al., 2017; Fischer et al., 2012). Globally, both
CAM‐chem and GEOS‐Chem predict that biogenic sources are the dominant acetone source, with primary
terrestrial emission a factor of ~4–5 higher than the secondary production from other BVOCs.
Anthropogenic emissions contribute 38% (CAM‐chem) and 37% (GEOS‐Chem) of the total acetone source
globally, which is dominated by secondary production from alkanes. Biomass burning contributes a small

Figure 9. The global budget of acetone, as well as the global burden and the atmospheric lifetime of acetone, calculated by CAM‐chem and GEOS‐Chem. In the
bottom budget table, positive and negative values denote atmospheric source and sink terms, respectively. CAM‐chem secondary anthropogenic source
includes 7.6 Tg a−1 from propane, 13.3 Tg a−1 from BIGALK (C4 and larger alkanes), and 7.6 Tg a−1 from BIGENE (C4 and larger alkenes). CAM‐chem secondary
biogenic source includes 5.8 Tg a−1 from α‐pinene, 0.3 Tg a−1 from β‐pinene, and 3.9 Tg a−1 from myrcene. GEOS‐Chem secondary anthropogenic source
includes 14.2 Tg a−1 from propane and 6.3 Tg a−1 from ALK4 (C4 and larger alkanes). The GEOS‐Chem secondary biogenic source is from unspeciated
terpenes. Gross oceanic emissions/uptake are considered in the total sources/sinks.
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fraction of atmospheric acetone, yet in certain regions/seasons the biomass burning contribution can be
substantial (Figure 4 and Figure 5). Photochemical loss is the major acetone sink, and both CAM‐chem
and GEOS‐Chem predict that photolysis contributes to more acetone loss than OH oxidation. Recent
GEOS‐Chem studies report an opposite trend: for instance, Brewer et al. (2017) and Fischer et al. (2012)
both suggest OH oxidation is the major sink of acetone. Another recent study (Khan et al., 2015) reports
that OH oxidation and photolysis are equally important for acetone removal. The pressure‐/temperature‐
dependent acetone photolysis (Blitz et al., 2004) was not available in early studies (e.g., Jacob et al., 2002),
leading to potential overestimate of photolysis contribution. Terrestrial uptake over land shows a factor of
~2 discrepancy between the two models. In CAM‐chem, both dry deposition and wet deposition are
considered for acetone, with dry deposition contributing to over 98% of the total deposition. GEOS‐Chem
does not have wet deposition for acetone. CAM‐chem online calculates dry deposition velocity (Vd) of
acetone for different surface types. For example, the mean Vd is 0.008 cm s−1 for bare
ground/nonvegetation surface (leaf area index, LAI = 0); 0.18 cm s−1 for LAI between 0 and 1;
0.27 cm s−1 for LAI larger than 2. Using the surface‐dependent dry deposition velocity of acetone,
CAM‐chem predicts that the South America (mostly Amazon region) alone accounts for 36% of the global
acetone dry deposition. GEOS‐Chem uses a fixed dry deposition velocity of 0.1 cm s−1 for all surface types
(Brewer et al., 2017; Fischer et al., 2012). The limited measurements of Vd for acetone range from 0.02 to
0.46 cm s−1 (Karl et al., 2004, 2005). Given the large discrepancy between CAM‐chem and GEOS‐Chem,
and the potential importance of dry deposition especially over the forest regions, the dry deposition of acet-
one warrants further exploration.

On the global scale, the large gross upward (emitting) oceanic fluxes of acetone are more or less balanced by
the gross downward (uptaking) oceanic fluxes, implying that the atmosphere–ocean exchange of acetone is
close to equilibrium. Using the machine learning‐predicted surface seawater acetone concentrations and the
updated BVOC chemistry, CAM‐chem predicts that the global ocean is a small net sink of acetone (−8.1 Tg
a−1), which is the difference between the two large gross terms (upward and downward: 33.4 and 41.5 Tg

Figure 10. CAM‐chem and GEOS‐Chem predicted meridional mean curtains of the acetone percent contribution to total HOx production in March–August and
September–February.
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a−1, respectively, Figure 9). GEOS‐Chem, with a fixed surface seawater concentration of acetone (15 nM),
predicted global gross upward and downward oceanic fluxes are on the same order of magnitude (45.7
and 44.4 Tg a−1, Figure 9), with a very small net emitting tendency from the ocean (+1.3 Tg a−1). We
consider the CAM‐chem prediction of the ocean net exchange (−8.1 Tg a−1) to be more robust, since the
machine‐learning approach linked to CAM‐chem takes advantages of more recent seawater acetone
measurements, leading to an improved agreement with observations in the global marine boundary layer
(Table S1). To summarize, both models support the view that the ocean strongly regulates atmospheric
acetone abundances, consistent with previous studies (Brewer et al., 2017; Fischer et al., 2012; Jacob
et al., 2002).

7. HOx Production From Acetone

In this work, acetone contribution to total HOx production is calculated by counting the difference between
simulated HOx in a base case scenario (as shown in Figures 3–5) and the simulated HOx when acetone is
allowed to undergo chemical removal without HOx radical production. This approach accounts for the total
HOx production from acetone oxidation products (mainly CH3O2 and CH3CO3), which depends on NOx,
several photolysis channels and cycling pathways. As shown in Figure 10, the acetone contribution to total
HOx production peaks in the tropical and subtropical upper troposphere and the lowermost stratosphere,
contributing up to 24% in CAM‐chem and 27% in GEOS‐Chem (both meridional means). The acetone con-
tribution to HOx production peaks in the tropical and subtropical upper troposphere and lowermost strato-
sphere, where the O3‐O(

1D)‐H2O mechanism is less efficient due to the dehydration associated with
updrafts. The acetone contribution to HOx production decreases substantially in the middle‐ and
high‐latitude regions. GEOS‐Chem predicts higher acetone‐induced HOx production in the Northern
Hemisphere in summer (Figure 10), due to the higher acetone abundance predicted by GEOS‐Chem over

Figure 11. CAM‐chem and GEOS‐Chem predicted seasonal means of the contribution to the total HOx production from acetone at the tropopause.
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this region (Figure 3). The sharp latitude gradient is also visible in Figure 11, which shows the seasonal
means of the acetone‐induced HOx production at the tropopause. Figure 10 shows that near the tropopause
over the Western tropical Pacific, acetone contributes to ~35–40% HOx production year long. Between
September and February, the contribution of acetone to HOx production near the tropopause reaches
~40% over Africa. Between March and August however, the contribution of acetone to HOx production
reaches ~36% over South Asia/Indian Ocean, Northern Africa and Western Asia. Note that the acetone
contribution to the total HOx production estimated in this work may be potentially biased, since the pos-
sible contributions of higher aldehydes (Müller & Brasseur, 1999; Wennberg et al., 1998) may not be cap-
tured by the models in the remote atmosphere. Recently, Neumaier et al. (2014) estimated the acetone
contribution to HOx production in the upper troposphere and lower stratosphere using airborne observa-
tions, and reported that acetone‐induced HOx production can be 61–95% of the HOx production from
ozone (note that other HOx sources, such as formaldehyde, are not considered in Neumaier et al.).
Assuming 4% HOx production from formaldehyde (Nicely et al., 2016), the results in Neumaier et al. (2014)
imply an acetone‐induced HOx production of up to 36–47%, generally consistent with the estimate in this
work (Figures 10 and 11).

8. Conclusions

We report the global atmospheric budget of acetone calculated using two global models, CAM‐chem and
GEOS‐Chem, and the models are compared to observations from a recent global‐scale, multiseasonal air-
borne campaign, NASA ATom. Both CAM‐chem and GEOS‐Chem include updated BVOC chemical
mechanisms. CAM‐chem is equipped with an online air‐sea exchange model framework to calculate the
bidirectional oceanic fluxes of acetone. The surface seawater concentrations of acetone are predicted using
a data‐oriented machine‐learning algorithm. We show that the ocean strongly regulates the acetone bud-
get over the remote oceans. The machine‐learning algorithm captures the large‐scale features revealed in
the limited surface seawater observations. Generally, there is very sparse availability of surface seawater
concentration and flux measurements for acetone, especially in the Pacific Ocean, Indian Ocean, and
Southern Ocean, and future ship‐based studies should target these regions. We show that together the
online air‐sea exchange framework and the observationally trained machine‐learning approach show pro-
mising potential. The performance can be further improved when more measurements become available.
This model framework can be expanded to the marine emissions for other climate‐relevant gases, such as
dimethyl sulfide (DMS).

We show that the newly developedmarine acetone inventory, with the ocean biogeochemistry control repre-
sented by a machine‐learning approach, results in improved agreement with observations in the remote
marine boundary layer, such as in the Southern Hemisphere and the Southern Ocean. Both CAM‐chem
and GEOS‐Chem capture measured acetone vertical distributions in the remote troposphere reasonably
well, although the drivers behind some of the observed spatial and seasonal variability remain unclear.
Despite different model configurations, the global budget, total atmospheric burden, and the atmospheric
lifetime of acetone derived from the twomodels are quite similar. The combined observational andmodeling
analysis suggest that (i) the CMIP6 anthropogenic emission inventory may underestimate acetone and/or its
precursors in the North Hemisphere. (ii) MEGAN may overestimate acetone and/or its precursor emissions
from the terrestrial ecosystem, and/or the biogenic oxidation mechanisms may overestimate secondary acet-
one yields. (iii) The model overestimation of acetone in the upper troposphere‐lower stratosphere in the
Southern Hemisphere in winter is unlikely due to photochemistry or transport; the widespread
model‐measurement discrepancy may imply an unknown acetone removal mechanism or the acetone over-
estimation in the subtropical midtroposphere.

Lastly, we show that acetone may contribute up to 30–40% of HOx production near the tropopause, espe-
cially in the tropical regions, where troposphere‐stratosphere exchange is active (e.g., strong convective
transport or Asian Monsoon). The acetone contribution to HOx production derived in this work is compar-
able to previous work (Neumaier et al., 2014). The tropical oceans are also a net source of acetone, leading to
stronger ocean biogeochemistry control on the oxidative capacity in the tropical upper troposphere and the
lowermost stratosphere.
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Data Availability Statement

CAM‐chem is a component of the NCAR CESM™ which is publicly available on the project website (http://
www.cesm.ucar.edu/) and github (https://github.com/ESCOMP/CESM). The CESM project is supported
primarily by the NSF. GEOS‐Chem (https://doi.org/10.5281/zenodo.1343547) is publicly available on github
(https://github.com/geoschem/geos-chem). For more details on GEOS‐Chem, see the project website
(http://acmg.seas.harvard.edu/geos/). This material is based upon work supported by NCAR, which is a
major facility sponsored by the NSF under Cooperative Agreement 1852977. The computing and data sto-
rage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the
Computational and Information Systems Laboratory (CISL) at NCAR. The Atmospheric Tomography
Mission (ATom) is funded by the Earth Science Project Office at NASA (NNX15AJ23G). The NCAR
TOGA and other airborne measurements obtained during the NASA ATom campaign are available from
Wofsy et al. (2018), accessed on 18 September 2019. The surface seawater acetone climatology data product
is available from Wang et al. (2020).
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