26 research outputs found

    Plasma levels of immunoreactive atrial natriuretic factor increase during supraventricular tachycardia

    Full text link
    A significant diuretic and natriuretic response occurs during paroxysmal supraventricular tachycardia (SVT). Although the diuresis may be secondary to suppression of vasopressin secretion, the etiology of the natriuresis remains unexplained. To determine if atrial natriuretic factor (ANF) could contribute to the polyuric response during SVT, 10 patients were studied: five during spontaneous SVT and five during simulated SVT produced by rapid simultaneous atrial and ventricular pacing. Plasma immunoreactive ANF (IR-ANF) levels measured by radioimmunoassay were obtained at baseline (before and/or 24 to 48 hours after SVT) and after at least 15 minutes of SVT in all patients. During spontaneous and simulated SVT, IR-ANF was significantly elevated (mean +/- SE; 275 +/- 68 pmol/L) compared to baseline (28 +/- 7 pmol/L; P = 0.0036). Similar increases in IR-ANF were noted during both simulated and spontaneous SVT. To determine if this IR-ANF release was related to the increase in heart rate or the rise in right atrial pressure during SVT, IR-ANF levels were also measured in five patients with sinus tachycardia and in six patients with congestive heart failure, IR-ANF was significantly related to right atrial pressure (r = 0.93; P = 0.0009) but not to heart rate (r = 0.46). Thus, IR-ANF is elevated during SVT and may contribute to the natriuretic response. The stimulus to IR-ANF secretion during SVT appears to be related to the rise in right atrial pressure rather than to the increase in heart rate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26001/1/0000067.pd

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders

    Get PDF
    A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Supplemental Material - Social support in the urban safety net: Assessing tie activation among individuals with complex care needs

    No full text
    Supplemental Material for Social support in the urban safety net: Assessing tie activation among individuals with complex care needs by Emily A. Ekl, Tessa M. Nápoles, Irene H. Yen, Laura E. Pathak, Jeff Nicklas, Janet K. Shim and Brea L. Perry in Journal of Social and Personal Relationships</p

    Design, Synthesis, and Antifungal Activity of 3‑Substituted-2(<i>5H</i>)‑Oxaboroles

    No full text
    Next generation antimicrobial therapeutics are desperately needed as new pathogens with multiple resistance mechanisms continually emerge. Two oxaboroles, tavaborole and crisaborole, were recently approved as topical treatments for onychomycosis and atopic dermatitis, respectively, warranting further studies into this privileged structural class. Herein, we report the antimicrobial properties of 3-substituted-2(5H)-oxaboroles, an unstudied family of medicinally relevant oxaboroles. Our results revealed minimum inhibitory concentrations as low as 6.25 and 5.20 μg/mL against fungal (e.g., Penicillium chrysogenum) and yeast (Saccharomyces cerevisiae) pathogens, respectively. These oxaboroles were nonhemolytic and nontoxic to rat myoblast cells (H9c2). Structure–activity relationship studies suggest that planarity is important for antimicrobial activity, possibly due to the effects of extended conjugation between the oxaborole and benzene rings

    Association of Breakfast Skipping With Visceral Fat and Insulin Indices in Overweight Latino Youth

    No full text
    Few studies have investigated the relationship between breakfast consumption and specific adiposity or insulin dynamics measures in children. The goal of this study is to determine whether breakfast consumption is associated with adiposity, specifically intra-abdominal adipose tissue (IAAT), and insulin dynamics in overweight Latino youth. Participants were a cross-sectional sample of 93 overweight (> or =85th percentile BMI) Latino youth (10-17 years) with a positive family history of type 2 diabetes. Dietary intake was assessed by two 24-h recalls, IAAT, and subcutaneous abdominal adipose tissue (SAAT) by magnetic resonance imaging, body composition by dual energy X-ray absorptiometry, and insulin dynamics by a frequently sampled intravenous glucose tolerance test and minimal modeling. Participants were divided into three breakfast consumption categories: those who reported not eating breakfast on either day (breakfast skippers; n = 20), those who reported eating breakfast on one of two days (occasional breakfast eaters; n = 39) and those who ate breakfast on both days (breakfast eaters; n = 34). Using analyses of covariance, breakfast omission was associated with increased IAAT (P = 0.003) independent of age, Tanner, sex, total body fat, total body lean tissue mass, and daily energy intake. There were no significant differences in any other adiposity measure or in insulin dynamics between breakfast categories. Eating breakfast is associated with lower visceral adiposity in overweight Latino youth. Interventions focused on increasing breakfast consumption are warranted
    corecore