112 research outputs found

    The WiggleZ Dark Energy Survey: the selection function and z=0.6 galaxy power spectrum

    Get PDF
    We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate the characteristic imprint of peculiar velocities. We use these to determine the growth rate of structure as a function of redshift in the range 0.4 < z < 0.8, including a data point at z=0.78 with an accuracy of 20%. Our growth rate measurements are a close match to the self-consistent prediction of the LCDM model. The WiggleZ Survey data will allow a wide range of investigations into the cosmological model, cosmic expansion and growth history, topology of cosmic structure, and Gaussianity of the initial conditions. Our calculation of the survey selection function will be released at a future date via our website wigglez.swin.edu.au.Comment: 21 pages, 22 figures, accepted for publication in MNRA

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae

    Full text link
    Astronomical observations suggest that today's Universe is dominated by a dark energy of unknown physical origin. One of the most notable consequences in many models is that dark energy should cause the expansion of the Universe to accelerate: but the expansion rate as a function of time has proven very difficult to measure directly. We present a new determination of the cosmic expansion history by combining distant supernovae observations with a geometrical analysis of large-scale galaxy clustering within the WiggleZ Dark Energy Survey, using the Alcock-Paczynski test to measure the distortion of standard spheres. Our result constitutes a robust and non-parametric measurement of the Hubble expansion rate as a function of time, which we measure with 10-15% precision in four bins within the redshift range 0.1 < z < 0.9. We demonstrate that the cosmic expansion is accelerating, in a manner independent of the parameterization of the cosmological model (although assuming cosmic homogeneity in our data analysis). Furthermore, we find that this expansion history is consistent with a cosmological-constant dark energy.Comment: 13 pages, 7 figures, accepted for publication by MNRA

    The WiggleZ Dark Energy Survey: Survey Design and First Data Release

    Get PDF
    The WiggleZ Dark Energy Survey is a survey of 240,000 emission line galaxies in the distant universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The target galaxies are selected using ultraviolet photometry from the GALEX satellite, with a flux limit of NUV<22.8 mag. The redshift range containing 90% of the galaxies is 0.2<z<1.0. The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4-8 Gyrs. Detailed forecasts indicate the survey will measure the BAO scale to better than 2% and the tangential and radial acoustic wave scales to approximately 3% and 5%, respectively. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction, and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100,000 galaxies measured for the project.Comment: Accepted by MNRAS; this has some figures in low resolution format. Full resolution PDF version (7MB) available at http://www.physics.uq.edu.au/people/mjd/pub/wigglez1.pdf The WiggleZ home page is at http://wigglez.swin.edu.au

    The WiggleZ Dark Energy Survey: Star-formation in UV-luminous galaxies from their luminosity functions

    Get PDF
    We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically-selected (r<22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample (-21.0>M_NUV>-22.5) evolve very rapidly with a number density declining as (1+z)^{5\pm 1} from redshift z = 0.9 to z = 0.6. These starburst galaxies (M_NUV<-21 is approximately a star formation rate of 30 \msuny) contribute about 1 per cent of cosmic star formation over the redshift range z=0.6 to z=0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1+z)^{4\pm 1}. Such a rapid evolution implies the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in 0.05 redshift intervals spanning 0.1<z<0.9, and provide analytic fits to the results. At all redshifts greater than z=0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M_NUV<-22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco et al. (2005), and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.Comment: 27 pages; 13 pages without appendices. 22 figures; 11 figures in the main tex

    The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Get PDF
    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.Comment: 17 pages, 11 figures, accepted for publication by MNRA

    The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

    Get PDF
    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H₀ = 67.15 ± 0.98 km s⁻¹Mpc⁻¹. Allowing the equation of state of dark energy to vary, we obtain wDE = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of ΩK = −0.0043 ± 0.0047

    Characteristics associated with quality of life among people with drug-resistant epilepsy

    Get PDF
    Quality of Life (QoL) is the preferred outcome in non-pharmacological trials, but there is little UK population evidence of QoL in epilepsy. In advance of evaluating an epilepsy self-management course we aimed to describe, among UK participants, what clinical and psycho-social characteristics are associated with QoL. We recruited 404 adults attending specialist clinics, with at least two seizures in the prior year and measured their self-reported seizure frequency, co-morbidity, psychological distress, social characteristics, including self-mastery and stigma, and epilepsy-specific QoL (QOLIE-31-P). Mean age was 42 years, 54% were female, and 75% white. Median time since diagnosis was 18 years, and 69% experienced ≥10 seizures in the prior year. Nearly half (46%) reported additional medical or psychiatric conditions, 54% reported current anxiety and 28% reported current depression symptoms at borderline or case level, with 63% reporting felt stigma. While a maximum QOLIE-31-P score is 100, participants’ mean score was 66, with a wide range (25–99). In order of large to small magnitude: depression, low self-mastery, anxiety, felt stigma, a history of medical and psychiatric comorbidity, low self-reported medication adherence, and greater seizure frequency were associated with low QOLIE-31-P scores. Despite specialist care, UK people with epilepsy and persistent seizures experience low QoL. If QoL is the main outcome in epilepsy trials, developing and evaluating ways to reduce psychological and social disadvantage are likely to be of primary importance. Educational courses may not change QoL, but be one component supporting self-management for people with long-term conditions, like epilepsy

    The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

    Get PDF
    Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of \sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]Comment: 18 pages, 12 figures, accepted to MNRAS; v2 has correction to one author's name, NO other changes; v3 has minor changes in explanation and calculations, no significant difference in results or conclusions; v4 has an additional footnote about model interpretation, no changes to data/calculations/result

    The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1

    Get PDF
    We perform a joint determination of the distance-redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock-Paczynski distortion from galaxy clustering in the WiggleZ Dark Energy Survey, using a large ensemble of mock catalogues to calculate the covariance between the measurements. We find that D_A(z) = (1205 +/- 114, 1380 +/- 95, 1534 +/- 107) Mpc and H(z) = (82.6 +/- 7.8, 87.9 +/- 6.1, 97.3 +/- 7.0) km/s/Mpc at these three redshifts. Further combining our results with other baryon acoustic oscillation and distant supernovae datasets, we use a Monte Carlo Markov Chain technique to determine the evolution of the Hubble parameter H(z) as a stepwise function in 9 redshift bins of width dz = 0.1, also marginalizing over the spatial curvature. Our measurements of H(z), which have precision better than 7% in most redshift bins, are consistent with the expansion history predicted by a cosmological-constant dark-energy model, in which the expansion rate accelerates at redshift z < 0.7.Comment: 11 pages, 11 figures, accepted for publication in MNRA
    corecore