220 research outputs found

    Thermodynamic functions of lactones in the gaseous state

    Get PDF
    © 2016, Springer Science+Business Media New York.The temperature dependences of the vapor pressures of oxacyclobutan-2-one and oxacyclopentan-2-one were measured by the transpiration method. The entropies of gaseous oxacycloalkan-2-ones (lactones) were determined based on the experimental values of entropy in the condensed state, vapor pressure, and enthalpy of vaporization. Thermodynamic functions of lactones with a ring size of n = 4—8 (number of atoms in the ring) were determined by quantum chemistry and statistical physics methods in the ideal gas approximation taking into account the molar fractions of all conformers and optical isomers in the temperature range from 298.15 to 1500 K. The enthalpies of ring strain were calculated based on the enthalpies of formation

    An Oort cloud origin for the high-inclination, high-perihelion Centaurs

    Full text link
    We analyse the origin of three Centaurs with perihelia in the range 15 AU to 30 AU, inclinations above 70 deg and semi-major axes shorter than 100 AU. Based on long-term numerical simulations we conclude that these objects most likely originate from the Oort cloud rather than the Kuiper Belt or Scattered Disc. We estimate that there are currently between 1 and 200 of these high-inclination, high-perihelion Centaurs with absolute magnitude H<8.Comment: Accepted for publication in MNRA

    The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material

    Full text link
    The scattering of small bodies by planets is an important dynamical process in planetary systems. We present an analytical model to describe this process using the simplifying assumption that each particle's dynamics is dominated by a single planet at a time. As such the scattering process can be considered as a series of three body problems during each of which the Tisserand parameter with respect to the relevant planet is conserved. This constrains the orbital parameter space into which a particle can be scattered. Such arguments have previously been applied to the process by which comets are scattered to the inner Solar System from the Kuiper belt. Our analysis generalises this for an arbitrary planetary system. For particles scattered from an outer belt directly along a chain of planets, based on the initial value of the Tisserand parameter, we find that it is possible to (i) determine which planets can eject the particles from the system, (ii) define a minimum stellar distance to which particles can be scattered, and (iii) constrain range of particle inclinations (and hence the disc height) at different distances. Applying this to the Solar System, we determine that the planets are close to optimally separated for scattering particles between them. Concerning warm dust found around stars that also have Kuiper belt analogues, we show that, if there is to be a dynamical link between the outer and inner regions, then certain architectures for the intervening planetary system are incapable of producing the observations. Furthermore we show that for certain planetary systems, comets can be scattered from an outer belt, or with fewer constraints, from an Oort cloud analogue, onto star-grazing orbits, in support of a planetary origin to the metal pollution and dustiness of some nearby white dwarfs

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    A group contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298K

    Get PDF
    Article on a group contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298 K

    The Solar System's Post-Main Sequence Escape Boundary

    Full text link
    The Sun will eventually lose about half of its current mass nonlinearly over several phases of post-main sequence evolution. This mass loss will cause any surviving orbiting body to increase its semimajor axis and perhaps vary its eccentricity. Here, we use a range of Solar models spanning plausible evolutionary sequences and assume isotropic mass loss to assess the possibility of escape from the Solar System. We find that the critical semimajor axis in the Solar System within which an orbiting body is guaranteed to remain bound to the dying Sun due to perturbations from stellar mass loss alone is approximately 1,000 AU - 10,000 AU. The fate of objects near or beyond this critical semimajor axis, such as the Oort Cloud, outer scattered disc and specific bodies such as Sedna, will significantly depend on their locations along their orbits when the Sun turns off of the main sequence. These results are applicable to any exoplanetary system containing a single star with a mass, metallicity and age which are approximately equal to the Sun's, and suggest that few extrasolar Oort Clouds could survive post-main sequence evolution intact.Comment: 15 pages, 11 figures, accepted for publication in MNRA

    Orbital features of distant trans-Neptunian objects induced by giant gaseous clumps

    No full text
    Context. The discovery of distant trans-Neptunian objects has led to heated discussions about the structure of the outer Solar System. Aims. We study the dynamical evolution of small bodies from the Hill regions of migrating giant gaseous clumps that form in the outer solar nebula via gravitational fragmentation. We attempt to determine whether the observed features of the orbital distribution of distant trans-Neptunian objects could be caused by this process. Methods. We consider a simple model that includes the Sun, two point-like giant clumps with masses of ∼10 Jupiter masses, and a set of massless objects initially located in the Hill regions of these clumps. We carry out numerical simulations of the motions of small bodies under gravitational perturbations from two giant clumps that move in elliptical orbits and approach each other. The orbital distribution of these small bodies is compared with the observed distribution of distant trans-Neptunian objects. Results. In addition to the known grouping in longitudes of perihelion, we note new features for observed distant trans-Neptunian objects. The observed orbital distribution points to the existence of two groups of distant trans-Neptunian objects with different dynamical characteristics. We show that the main features of the orbital distribution of distant trans-Neptunian objects can be explained by their origin in the Hill regions of migrating giant gaseous clumps. Small bodies are ejected from the Hill regions when the giant clumps move in high-eccentricity orbits and have a close encounter with each other. Conclusions. The resulting orbital distribution of small bodies in our model and the observed distribution of distant trans-Neptunian objects have similar features
    • …
    corecore