128 research outputs found

    Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence

    Full text link
    The development of civilisations like ours into spacefaring, multi-planet entities requires significant raw materials to construct vehicles and habitats. Interplanetary debris, including asteroids and comets, may provide such a source of raw materials. In this article we present the hypothesis that extraterrestrial intelligences (ETIs) engaged in asteroid mining may be detectable from Earth. Considering the detected disc of debris around Vega as a template, we explore the observational signatures of targeted asteroid mining (TAM), such as unexplained deficits in chemical species, changes in the size distribution of debris and other thermal signatures which may be detectable in the spectral energy distribution (SED) of a debris disc. We find that individual observational signatures of asteroid mining can be explained by natural phenomena, and as such they cannot provide conclusive detections of ETIs. But, it may be the case that several signatures appearing in the same system will prove harder to model without extraterrestrial involvement. Therefore signatures of TAM are not detections of ETI in their own right, but as part of "piggy-back" studies carried out in tandem with conventional debris disc research, they could provide a means of identifying unusual candidate systems for further study using other SETI techniques.Comment: 15 pages, 2 figures, accepted for publication in the International Journal of Astrobiolog

    Systems analysis of stock buffering: development of a dynamic substance flow-stock model for the identification and estimation of future resource, waste streams and emissions

    Get PDF
    The research presented in this thesis falls within a relatively new scientific field of research: Industrial Ecology, which is concerned with studying society’s metabolism to analyze the causes of environmental problems and indicate possibilities for more sustainable management of materials. The research is aimed at developing a dynamic substance flow-stock model that can be used to estimate future resource availability, emissions and waste streams. The developed model extends the currently available SFA models in three respects. Firstly, by combining flows and stocks. Secondly, it combines physical and economic elements. And thirdly, it operates at two levels: those of products and substances. The model has been applied to two case studies aimed at evaluating the economic and environmental consequences of the developments of lead flows and stocks and investigating the potential long-term impact of the use of platinum in fuel cell technology. The main outcome of the lead model suggests that in the Netherlands the amount of lead available for recycling is expected to exceed its demand. If comparable developments can be detected on a larger scale, the landfill and incineration streams might increase at the expense of recycling and consequently an increase in emissions. The outcome of the platinum model suggests that the identified resources of platinum will be depleted before the end of the century if no additional measures are taken. Moreover, the increased production of platinum will not have major consequences for the co-produced copper cycle. For nickel, the supply from platinum ores is expected to exceed its demand, which will have profound consequences for both the primary mining and the recycling of nickel.LEI Universiteit LeidenIndustrial Ecolog

    Energy-Cement-Carbon Emission Nexus and its Implications for Future Urbanization in China

    Get PDF
    With rapid urbanization and the requirements for new buildings and infrastructure, cement production is expected to increase in China. Meanwhile, China’s energy consumption and carbon emissions associated with cement industry are expected to increase, as cement production is one of the most energy intensive industries. Introducing new and more pertinent technologies with better management, as indicated by government goals and measures, can improve energy efficiency and reduce carbon emission. However, many challenges and uncertainties in the cement industry have been addressed without considering several interconnected processes among sectors including industry, energy, construction, and services, which lead to little improvements in the industry. Nexus approaches are recognized as effective methods to simultaneously examine interactions among multiple sectors with various elements. This research intends to provide insights for future energy-cement-carbon emission nexus, through integrated assessment capabilities, related to China’s new urbanization planning toward 2050. Several challenges and uncertainties, including different trends in population growth, structural transformation of economic driving forces, and new but stricter policy targets for resource use efficiency and environment production, are put into multiple scenarios. The results of our analysis provide perspectives on future direction to underscore the growing interconnection among energy, cement and carbon emission with clear and more specific roadmap for promoting integrated planning, management and governance

    Public policy and future mineral supplies

    Get PDF
    A widespread and pessimistic view of the availability of mineral commodities calls for strong government initiatives to ensure adequate future supplies. This article provides a more market oriented and optimistic perspective, one that focuses on production costs and prices rather than physical availability. It sees short-run shortages continuing to plague commodity markets in the future as in the past. Though painful while they last, these shortages are temporary and do not pose a serious long-run threat to human welfare. Moreover, even without government intervention, they self-correct. The sharply higher prices that they evoke create strong incentives that foster supply and curb demand. Potentially more serious are long-run shortages due to mineral depletion. Such shortages are often thought to be inevitable, a conclusion that flows directly from the physical view of depletion. For various reasons, we reject this view of depletion in favor of an economic view. The latter recognizes that depletion may create long-run shortages, but stresses that this need not be the case if new technology can continue to offset the cost-increasing effects of depletion in the future as it has in the past. The economic view also suggests that a list of mineral commodities most threatened by depletion can best be compiled using cumulative availability curves rather than the more common practice of calculating commodity life expectancies based on estimates of available stocks.<p>Validerad;2018;NivÄ 2;2018-08-08 (rokbeg)</p

    Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes

    Get PDF
    Increasing recovery of critical raw materials (CRMs) from waste electrical and electronic equipment (WEEE) is a strategic priority to mitigate supply risks. Today, CRM recovery rates are generally low, with increases requiring new recovery processes and interface optimisation with pre-processing to ensure appropriate material flows for efficient recovery are generated. Here, results from an industrial trial to increase CRM recovery from WEEE are presented to inform development of pre-processing strategies which generate such material flows. Au, Ag, Co, Ga, Mg, Nb, Ru, Pd, Ir, Y, Nd, Sb, Ta and W are identified with XRF in components of a range of WEEE samples including within individual printed circuit board (PCB) components. CRM distribution in PCBs is mapped by visual inspection with reference to this data. Cost-effective methods to disassemble WEEE; isolate CRM bearing components, and upgrade/concentrate CRMs are evaluated for industrial adoption. A guillotine is found most suitable for LCD disassembly and separation of Au edge-contacts from PCBs, while cryocracking is best for isolation of internal components of digital media devices. Thermal PCB disassembly with a solder bath for simultaneous SMD removal and subsequent sieving to sort SMDs thereby concentrating CRMs for recovery is a promising approach. Microwave ashing of PCBs to concentrate CRMs is promising although off-gas treatment would be required. Recovery potential of identified CRMs from material streams generated is found to be poor due to lack of suitable recovery infrastructure except for precious and platinum group metals in PCBs, but available pyrometallurgical recovery permanently dissipates other CRMs present

    MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints

    Get PDF
    Producción CientíficaA diversity of integrated assessment models (IAMs) coexists due to the different approaches developed to deal with the complex interactions, high uncertainties and knowledge gaps within the environment and human societies. This paper describes the open-source MEDEAS modeling framework, which has been developed with the aim of informing decision-making to achieve the transition to sustainable energy systems with a focus on biophysical, economic, social and technological restrictions and tackling some of the limitations identified in the current IAMs. MEDEAS models include the following relevant characteristics: representation of biophysical constraints to energy availability; modeling of the mineral and energy investments for the energy transition, allowing a dynamic assessment of the potential mineral scarcities and computation of the net energy available to society; consistent representation of climate change damages with climate assessments by natural scientists; integration of detailed sectoral economic structure (input–output analysis) within a system dynamics approach; energy shifts driven by physical scarcity; and a rich set of socioeconomic and environmental impact indicators. The potentialities and novel insights that this framework brings are illustrated by the simulation of four variants of current trends with the MEDEAS-world model: the consideration of alternative plausible assumptions and methods, combined with the feedback-rich structure of the model, reveal dynamics and implications absent in classical models. Our results suggest that the continuation of current trends will drive significant biophysical scarcities and impacts which will most likely derive in regionalization (priority to security concerns and trade barriers), conflict, and ultimately, a severe global crisis which may lead to the collapse of our modern civilization. Despite depicting a much more worrying future than conventional projections of current trends, we however believe it is a more realistic counterfactual scenario that will allow the design of improved alternative sustainable pathways in future work.Ministerio de Economía, Industria y Competitividad (Project CO2017-85110-R)Ministerio de Economía, Industria y Competitividad (Project JCI-2016–28833)MEDEAS project, funded by the European Union’s Horizon2020 research and innovation programme under grant agree-ment no. 691287.LOCOMOTION project, funded by the EuropeanUnion’s Horizon 2020 research and innovation programmeunder grant agreement no. 82110
    • 

    corecore