34 research outputs found

    Developing and Assessing Curriculum on the Physics of Medical Instruments

    Get PDF
    Undergraduate educational settings often struggle to provide students with authentic biologically or medically relevant situations and problems that simultaneously improve their understanding of physics. Through exercises and laboratory activities developed in an elective Physics in Biomedicine course for upper-level biology or pre–health majors at Portland State University, we aim to teach fundamental physical concepts, such as light absorption and emission and atomic energy levels, through analysis of biological systems and medical devices. The activities address the properties of electromagnetic waves as they relate to the interaction with biological tissue and make links between physics and biomedical applications such as microscopy or laser eye surgery.We report on the effect that engaging students in tasks with actual medical equipment has had on their conceptual understanding of light and spectroscopy. These initial assessments indicate that students’ understanding improves in some areas as a result of taking the course, but gains are not uniform and are relatively low for other topics.We also find a promising “nonshift” in student attitudes toward learning science as a result of taking the course. A long-term goal of this work is to develop these materials to the extent that they can eventually be imported into an introductory curriculum for life sciences majors

    Titan’s internal structure and the evolutionary consequences

    Get PDF
    Titan’s moment of inertia (MoI), estimated from the quadrupole gravity field measured by the Cassini spacecraft, is 0.342, which has been interpreted as evidence of a partially differentiated internal mass distribution. It is shown here that the observed MoI is equally consistent with a fully differentiated internal structure comprising a shell of water ice overlying a low-density silicate core; depending on the chemistry of Titan’s subsurface ocean, the core radius is between 1980 and 2120 km, and its uncompressed density is 2570–2460 kg m−3, suggestive of a hydrated CI carbonaceous chondrite mineralogy. Both the partially differentiated and fully differentiated hydrated core models constrain the deep interior to be several hundred degrees cooler than previously thought. I propose that Titan has a warm wet core below, or buffered at, the high-pressure dehydration temperature of its hydrous constituents, and that many of the gases evolved by thermochemical and radiogenic processes in the core (such as CH4 and 40Ar, respectively) diffuse into the icy mantle to form clathrate hydrates, which in turn may provide a comparatively impermeable barrier to further diffusion. Hence we should not necessarily expect to see a strong isotopic signature of serpentinization in Titan’s atmosphere
    corecore