8 research outputs found

    Evaluation of biomarkers for testicular toxicity

    Get PDF
    Non-clinical safety assessment is essential during the drug development process in the pharmaceutical industry, and involves numerous, detailed in vitro and in vivo toxicology tests (general, reproductive and genetic), and safety pharmacology studies. The testis is a common organ for adverse drug effects leading to attrition of potential compounds. It would, therefore, be useful to detect testicular toxicity as early as possible in the drug development process. Histopathology is the standard method for assessing testis toxicity, but a biomarker for ‘early warning’ detection of testicular toxicity would be far more useful in non-clinical toxicology studies. The aim of this thesis was to evaluate the feasibility of this approach. It is thought that proteins can leak from seminiferous tubules into testicular interstitial fluid following testicular damage, due to either loss of integrity of the blood-testis barrier (BTB) or germ cell damage. A potential biomarker protein could, therefore, leak out of seminiferous tubules into interstitial fluid and then into blood following toxicological insult to the testis. A suitable biomarker protein must be testis specific, abundant, and not normally be present in blood. It may also need to have a low molecular weight. To investigate if proteins do leak out of seminiferous tubules following testicular damage, three known testicular toxicants which affect different aspects of the testis were used; cadmium chloride causes disruption to the blood-testis barrier and spermatogenesis, methoxyacetic acid (MAA) specifically causes a loss of pachytene spermatocytes, and 1,3-dinitrobenzene (DNB) causes Sertoli cell vacuolation and subsequent germ cell disruption. Adult male Wistar rats were treated with various doses of these toxicants to give mild and moderate responses. Samples were collected 24 hours later. Testicular damage was investigated by immunohistochemistry for well-known germ cell markers (DAZL, VASA) and using a general antibody to seminiferous tubule proteins. The integrity of the BTB was evaluated using immunofluorescent co-localisation of occludin, ZO-1, claudin-11, N-cadherin and β-catenin, and a biotin tracer. Protein leakage was investigated using analysis of interstitial fluid samples by 1D gel electrophoresis and staining with Coomassie-based dye or Western blotting for germ cell proteins and with the general antibody to seminiferous tubule proteins. Protein leakage from seminiferous tubules into interstitial fluid was observed with high dose cadmium chloride treatment. This was coincident with a loss of integrity of the BTB. No leakage was observed with MAA treatment which caused a specific loss of pachytene spermatocytes, or DNB which caused Sertoli cell vacuolation. With both treatments the BTB did not appear to be damaged suggesting that protein leakage occurs only following loss of integrity of the BTB. This was further investigated using treatments reported to specifically disrupt the BTB, namely intra-testicular administration of glycerol or transforming growth factor-β3, with samples collected 48 hours later. The damage caused was very localised, although BTB disruption with glycerol treatment caused some protein leakage. The presence of germ cell proteins in interstitial fluid samples before and after the development of the BTB during normal development was also evaluated, although most proteins of interest were not expressed in germ cells of the immature testis before BTB formation. Finally, five potential biomarker candidate proteins (ADAM3, Calpastatin, DAZL, FABP9, VASA) were selected and investigated using samples from the testicular toxicant studies. Smaller molecular weight proteins were thought to be more likely to leak out of seminiferous tubules, however, VASA, a large molecular protein (76kDa) was shown to leak into interstitial fluid following high dose cadmium chloride treatment. However, FABP9 (low molecular weight) was found to be the most promising biomarker for loss of BTB integrity. The results suggest that a biomarker could only be detected if there is a loss of integrity of the BTB and severe disruption of spermatogenesis, thus conferring no real advantage over present histopathology-based toxicity evaluations. Therefore, an automated immunohistochemistry and image analysis method was investigated as a refined method for detection of testicular toxicity at the end of a toxicology study, and shown to have promise

    Toxicant-Induced Leakage of Germ Cell–Specific Proteins from Seminiferous Tubules in the Rat: Relationship to Blood-Testis Barrier Integrity and Prospects for Biomonitoring

    Get PDF
    Evaluation of testicular toxicity during drug development is currently based on histopathological evaluation. A sensitive biomarker for testicular toxicology could provide an in-life and “early warning” measurement. Previous studies suggested that disruption of spermatogenesis induced leakage of germ cell proteins from seminiferous tubules (STs) into interstitial fluid (IF); such proteins have potential for use as biomarkers. To investigate this possibility further, adult male rats were treated with three testicular toxicants thought to have differing sites of action; cadmium chloride affects the blood-testis barrier (BTB), methoxyacetic acid (MAA) disrupts pachytene spermatocytes, and 1,3-dinitrobenzene (DNB) targets Sertoli cells. IF proteins were assessed by Coomassie-based dye-stained gels. Immunostaining was used to identify toxicant-induced damage (DAZL) and BTB integrity (ZO-1, occludin, N-cadherin, and β-catenin) and function (biotin). Cadmium chloride induced dose-dependent leakage of proteins from STs into IF coincident with loss of integrity and function of the BTB. Two of the “leaked” proteins were identified on Westerns as being germ cell specific, namely VASA and fatty acid–binding protein 9 (FABP9). In contrast, similar protein leakage was not evident after either MAA-induced or DNB-induced disruption of spermatogenesis and neither of these treatments affected BTB integrity or function. These results suggest that loss of BTB integrity is required for germ cell–specific proteins to leak from STs into IF, implying that use of such biomarkers has very limited potential for noninvasive monitoring of compound-induced disruption to spermatogenesis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Evaluation of biomarkers for testicular toxicity

    No full text
    Non-clinical safety assessment is essential during the drug development process in the pharmaceutical industry, and involves numerous, detailed in vitro and in vivo toxicology tests (general, reproductive and genetic), and safety pharmacology studies. The testis is a common organ for adverse drug effects leading to attrition of potential compounds. It would, therefore, be useful to detect testicular toxicity as early as possible in the drug development process. Histopathology is the standard method for assessing testis toxicity, but a biomarker for ‘early warning’ detection of testicular toxicity would be far more useful in non-clinical toxicology studies. The aim of this thesis was to evaluate the feasibility of this approach. It is thought that proteins can leak from seminiferous tubules into testicular interstitial fluid following testicular damage, due to either loss of integrity of the blood-testis barrier (BTB) or germ cell damage. A potential biomarker protein could, therefore, leak out of seminiferous tubules into interstitial fluid and then into blood following toxicological insult to the testis. A suitable biomarker protein must be testis specific, abundant, and not normally be present in blood. It may also need to have a low molecular weight. To investigate if proteins do leak out of seminiferous tubules following testicular damage, three known testicular toxicants which affect different aspects of the testis were used; cadmium chloride causes disruption to the blood-testis barrier and spermatogenesis, methoxyacetic acid (MAA) specifically causes a loss of pachytene spermatocytes, and 1,3-dinitrobenzene (DNB) causes Sertoli cell vacuolation and subsequent germ cell disruption. Adult male Wistar rats were treated with various doses of these toxicants to give mild and moderate responses. Samples were collected 24 hours later. Testicular damage was investigated by immunohistochemistry for well-known germ cell markers (DAZL, VASA) and using a general antibody to seminiferous tubule proteins. The integrity of the BTB was evaluated using immunofluorescent co-localisation of occludin, ZO-1, claudin-11, N-cadherin and β-catenin, and a biotin tracer. Protein leakage was investigated using analysis of interstitial fluid samples by 1D gel electrophoresis and staining with Coomassie-based dye or Western blotting for germ cell proteins and with the general antibody to seminiferous tubule proteins. Protein leakage from seminiferous tubules into interstitial fluid was observed with high dose cadmium chloride treatment. This was coincident with a loss of integrity of the BTB. No leakage was observed with MAA treatment which caused a specific loss of pachytene spermatocytes, or DNB which caused Sertoli cell vacuolation. With both treatments the BTB did not appear to be damaged suggesting that protein leakage occurs only following loss of integrity of the BTB. This was further investigated using treatments reported to specifically disrupt the BTB, namely intra-testicular administration of glycerol or transforming growth factor-β3, with samples collected 48 hours later. The damage caused was very localised, although BTB disruption with glycerol treatment caused some protein leakage. The presence of germ cell proteins in interstitial fluid samples before and after the development of the BTB during normal development was also evaluated, although most proteins of interest were not expressed in germ cells of the immature testis before BTB formation. Finally, five potential biomarker candidate proteins (ADAM3, Calpastatin, DAZL, FABP9, VASA) were selected and investigated using samples from the testicular toxicant studies. Smaller molecular weight proteins were thought to be more likely to leak out of seminiferous tubules, however, VASA, a large molecular protein (76kDa) was shown to leak into interstitial fluid following high dose cadmium chloride treatment. However, FABP9 (low molecular weight) was found to be the most promising biomarker for loss of BTB integrity. The results suggest that a biomarker could only be detected if there is a loss of integrity of the BTB and severe disruption of spermatogenesis, thus conferring no real advantage over present histopathology-based toxicity evaluations. Therefore, an automated immunohistochemistry and image analysis method was investigated as a refined method for detection of testicular toxicity at the end of a toxicology study, and shown to have promise.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Environmental and societal factors associated with COVID-19-related death in people with rheumatic disease: an observational study

    No full text
    Published by Elsevier Ltd.Background: Differences in the distribution of individual-level clinical risk factors across regions do not fully explain the observed global disparities in COVID-19 outcomes. We aimed to investigate the associations between environmental and societal factors and country-level variations in mortality attributed to COVID-19 among people with rheumatic disease globally. Methods: In this observational study, we derived individual-level data on adults (aged 18-99 years) with rheumatic disease and a confirmed status of their highest COVID-19 severity level from the COVID-19 Global Rheumatology Alliance (GRA) registry, collected between March 12, 2020, and Aug 27, 2021. Environmental and societal factors were obtained from publicly available sources. The primary endpoint was mortality attributed to COVID-19. We used a multivariable logistic regression to evaluate independent associations between environmental and societal factors and death, after controlling for individual-level risk factors. We used a series of nested mixed-effects models to establish whether environmental and societal factors sufficiently explained country-level variations in death. Findings: 14 044 patients from 23 countries were included in the analyses. 10 178 (72·5%) individuals were female and 3866 (27·5%) were male, with a mean age of 54·4 years (SD 15·6). Air pollution (odds ratio 1·10 per 10 μg/m3 [95% CI 1·01-1·17]; p=0·0105), proportion of the population aged 65 years or older (1·19 per 1% increase [1·10-1·30]; p<0·0001), and population mobility (1·03 per 1% increase in number of visits to grocery and pharmacy stores [1·02-1·05]; p<0·0001 and 1·02 per 1% increase in number of visits to workplaces [1·00-1·03]; p=0·032) were independently associated with higher odds of mortality. Number of hospital beds (0·94 per 1-unit increase per 1000 people [0·88-1·00]; p=0·046), human development index (0·65 per 0·1-unit increase [0·44-0·96]; p=0·032), government response stringency (0·83 per 10-unit increase in containment index [0·74-0·93]; p=0·0018), as well as follow-up time (0·78 per month [0·69-0·88]; p<0·0001) were independently associated with lower odds of mortality. These factors sufficiently explained country-level variations in death attributable to COVID-19 (intraclass correlation coefficient 1·2% [0·1-9·5]; p=0·14). Interpretation: Our findings highlight the importance of environmental and societal factors as potential explanations of the observed regional disparities in COVID-19 outcomes among people with rheumatic disease and lay foundation for a new research agenda to address these disparities.MAG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534 [JY]). KDW is supported by the Department of Veterans Affairs and the Rheumatology Research Foundation Scientist Development award. JAS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253, and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R. Bruce and Joan M. Mickey Research Scholar Fund. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). AD-G is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. RH was supported by the Justus-Liebig University Giessen Clinician Scientist Program in Biomedical Research to work on this registry. JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155).info:eu-repo/semantics/publishedVersio

    Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

    No full text
    Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n similar to 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders

    Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

    Get PDF
    Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n similar to 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders
    corecore