1,337 research outputs found

    Deficiency of factor-inhibiting HIF creates a tumor-promoting immune microenvironment

    Get PDF
    Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway

    Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells

    Get PDF
    Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte antigen (HLA) class I ligands and play a key role in the regulation and activation of NK cells. The functional importance of KIR-HLA interactions has been demonstrated for a number of chronic viral infections, but to date only a few studies have been performed in the context of acute self-limited viral infections. During our investigation of CD8(+) T cell responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B lymphocytes in peripheral blood mononuclear cells (PBMC) from a long-standing clinical cohort in Thailand. We confirmed binding of the NS1 tetramer to CD56(dim) NK cells, which are known to express KIRs. Using depletion studies and KIR-transfected cell lines, we demonstrated further that the NS1 tetramer bound the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from HLA-B57(+) subjects with acute DENV infection revealed marked activation of NS1 tetramer-binding natural killer (NK) cells around the time of defervescence in subjects with severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated relatively late in the course of acute DENV illness and reveal a possible role for specific KIR-HLA interactions in the modulation of disease outcomes

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Surface indicators are correlated with soil multifunctionality in global drylands

    Get PDF
    1. Multiple ecosystem functions need to be considered simultaneously to manage and protect the several ecosystem services that are essential to people and their environments. Despite this, cost effective, tangible, relatively simple and globally relevant methodologies to monitor in situ soil multifunctionality, that is, the provision of multiple ecosystem functions by soils, have not been tested at the global scale. 2. We combined correlation analysis and structural equation modelling to explore whether we could find easily measured, field‐based indicators of soil multifunctionality (measured using functions linked to the cycling and storage of soil carbon, nitrogen and phosphorus). To do this, we gathered soil data from 120 dryland ecosystems from five continents. 3. Two soil surface attributes measured in situ (litter incorporation and surface aggregate stability) were the most strongly associated with soil multifunctionality, even after accounting for geographic location and other drivers such as climate, woody cover, soil pH and soil electric conductivity. The positive relationships between surface stability and litter incorporation on soil multifunctionality were greater beneath the canopy of perennial vegetation than in adjacent, open areas devoid of vascular plants. The positive associations between surface aggregate stability and soil functions increased with increasing mean annual temperature. 4. Synthesis and applications. Our findings demonstrate that a reduced suite of easily measured in situ soil surface attributes can be used as potential indicators of soil multifunctionality in drylands world‐wide. These attributes, which relate to plant litter (origin, incorporation, cover), and surface stability, are relatively cheap and easy to assess with minimal training, allowing operators to sample many sites across widely varying climatic areas and soil types. The correlations of these variables are comparable to the influence of climate or soil, and would allow cost‐effective monitoring of soil multifunctionality under changing land‐use and environmental conditions. This would provide important information for evaluating the ecological impacts of land degradation, desertification and climate change in drylands world‐wide.This work was funded by the European Research Council ERC Grant agreement 242658 (BIOCOM). CYTED funded networking activities (EPES, Acción 407AC0323). D.J.E. acknowledges support from the Australian Research Council (DP150104199) and F.T.M. support from the European Research Council (BIODESERT project, ERC Grant agreement no 647038), from the Spanish Ministerio de Economía y Competitividad (BIOMOD project, ref. CGL2013-44661-R) and from a Humboldt Research Award from the Alexander von Humboldt Foundation. M.D.-B. was supported by REA grant agreement no 702057 from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016), J.R.G. acknowledges support from CONICYT/FONDECYT no 1160026

    Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.

    Get PDF
    Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis

    Get PDF
    Background: Global and regional prevalence estimates for blindness and vision impairment are important for the development of public health policies. We aimed to provide global estimates, trends, and projections of global blindness and vision impairment. Methods: We did a systematic review and meta-analysis of population-based datasets relevant to global vision impairment and blindness that were published between 1980 and 2015. We fitted hierarchical models to estimate the prevalence (by age, country, and sex), in 2015, of mild visual impairment (presenting visual acuity worse than 6/12 to 6/18 inclusive), moderate to severe visual impairment (presenting visual acuity worse than 6/18 to 3/60 inclusive), blindness (presenting visual acuity worse than 3/60), and functional presbyopia (defined as presenting near vision worse than N6 or N8 at 40 cm when best-corrected distance visual acuity was better than 6/12). Findings: Globally, of the 7·33 billion people alive in 2015, an estimated 36·0 million (80% uncertainty interval [UI] 12·9–65·4) were blind (crude prevalence 0·48%; 80% UI 0·17–0·87; 56% female), 216·6 million (80% UI 98·5–359·1) people had moderate to severe visual impairment (2·95%, 80% UI 1·34–4·89; 55% female), and 188·5 million (80% UI 64·5–350·2) had mild visual impairment (2·57%, 80% UI 0·88–4·77; 54% female). Functional presbyopia affected an estimated 1094·7 million (80% UI 581·1–1686·5) people aged 35 years and older, with 666·7 million (80% UI 364·9–997·6) being aged 50 years or older. The estimated number of blind people increased by 17·6%, from 30·6 million (80% UI 9·9–57·3) in 1990 to 36·0 million (80% UI 12·9–65·4) in 2015. This change was attributable to three factors, namely an increase because of population growth (38·4%), population ageing after accounting for population growth (34·6%), and reduction in age-specific prevalence (–36·7%). The number of people with moderate and severe visual impairment also increased, from 159·9 million (80% UI 68·3–270·0) in 1990 to 216·6 million (80% UI 98·5–359·1) in 2015. Interpretation: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world’s population is causing a substantial increase in number of people affected. These observations, plus a very large contribution from uncorrected presbyopia, highlight the need to scale up vision impairment alleviation efforts at all levels

    Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis

    Get PDF
    Background: Contemporary data on causes of vision impairment and blindness form an important basis for recommendations in public health policies. Refreshment of the Global Vision Database with recently published data sources permitted modeling of cause of vision loss data from 1990 to 2015, further disaggregation by cause, and forecasts to 2020. Methods: Published and unpublished population-based data on the causes of vision impairment and blindness from 1980 to 2015 were systematically analysed. A series of regression models were fit to estimate the proportion of moderate and severe vision impairment (MSVI; defined as presenting visual acuity <6/18 but ≥3/60 in the better eye) and blindness (presenting visual acuity <3/60 in the better eye) by cause by age, region, and year. Findings: Among the projected global population with MSVI (216.6 million; 80% uncertainty intervals [UI] 98.5-359.1), in 2015 the leading causes thereof are uncorrected refractive error (116.3 million; UI 49.4-202.1), cataract (52.6 million; UI 18.2-109.6), age-related macular degeneration (AMD; 8.4 million; UI 0.9-29.5), glaucoma (4.0 million; UI 0.6-13.3) and diabetic retinopathy (2.6 million; UI 0.2-9.9). In 2015, the leading global causes of blindness were cataract (12.6 million; UI 3.4-28.7) followed by uncorrected refractive error (7.4 million; UI 2.4-14.8) and glaucoma (2.9 million; UI 0.4-9.9), while by 2020, these numbers affected are anticipated to rise to 13.4 million, 8.0 million and 3.2 million, respectively. Cataract and uncorrected refractive error combined contributed to 55% of blindness and 77% of MSVI in adults aged 50 years and older in 2015. World regions varied markedly in the causes of blindness, with a relatively low prevalence of cataract and a relatively high prevalence of AMD as causes for vision loss in the High-income subregions. Blindness due to cataract and diabetic retinopathy was more common among women, while blindness due to glaucoma and corneal opacity was more common among men, with no gender difference related to AMD. Conclusions: The numbers of people affected by the common causes of vision loss have increased substantially as the population increases and ages. Preventable vision loss due to cataract and refractive error (reversible with surgery and spectacle correction respectively), continue to cause the majority of blindness and MSVI in adults aged 50+ years. A massive scale up of eye care provision to cope with the increasing numbers is needed if one is to address avoidable vision loss

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    corecore