163 research outputs found
Force-induced melting of DNA-evidence for peeling and internal melting from force spectra on short synthetic duplex sequences
Overstretching of DNA occurs at about 60-70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or both strands carry the tension, or a B-to-S transition into a longer, still base-paired conformation. We stretch sequence-designed oligonucleotides in an effort to isolate the three processes, focusing on force-induced melting. By introducing site-specific inter-strand cross-links in one or both ends of a 64 bp AT-rich duplex we could repeatedly follow the two melting processes at 5 mM and 1 M monovalent salt. We find that when one end is sealed the AT-rich sequence undergoes peeling exhibiting hysteresis at low and high salt. When both ends are sealed the AT sequence instead undergoes internal melting. Thirdly, the peeling melting is studied in a composite oligonucleotide where the same AT-rich sequence is concatenated to a GC-rich sequence known to undergo a B-to-S transition rather than melting. The construct then first melts in the AT-rich part followed at higher forces by a B-to-S transition in the GC-part, indicating that DNA overstretching modes are additive
Modular and automated synthesis of oligonucleotide-small molecule conjugates for cathepsin B mediated traceless release of payloads † ‡
The reversible attachment of small molecules to oligonucleotides provides versatile tools for the development of improved oligonucleotide therapeutics. However, cleavable linkers in the oligonucleotide field are scarce, particularly with respect to the requirement for traceless release of the payload in vivo. Herein, we describe a cathepsin B-cleavable dipeptide phosphoramidite, Val-Ala(NB) for the automated synthesis of oligonucleotide-small molecule conjugates. Val-Ala(NB) was protected by a photolabile 2-nitrobenzyl group to improve the stability of the peptide linker during DNA synthesis. Intracellular cathepsin B digests the dipeptide efficiently, releasing the payload-phosphate which is converted to the free payload by endogenous phosphatase enzymes. With the advantages of modular synthesis and stimuli-responsive drug release, we believe Val-Ala(NB) will be a potentially valuable cleavable linker for use in oligonucleotide-drug conjugates
Bayesian estimation of P[Y \u3c X] Based on Record Values from the Lomax Distribution and MCMC Technique
Our interest is in estimating the stress-strength reliability R = P[Y \u3c X], where X and Y follow the Lomax distribution with common scale parameter. We discuss the problem in the situation where the stress measurements and the strength measurements are both in terms of records. Firstly, we obtain the MLE of R in general case (the common scale parameter is unknown). The MLE of the three unknown parameters can be obtained by solving one non-linear equation. We provide a simple fixed point type algorithm to find the MLE. We propose percentile bootstrap confidence intervals of R. A Bayes point estimator of R, and the corresponding credible interval using the MCMC sampling technique have been proposed. Secondly, assuming the common scale parameter is known, the MLE of R is obtained. Using exact distributions of the MLEs of the two unknown parameters, we construct the exact confidence interval of R. In this case, Bayes estimators have been obtained using Lindley\u27s approximations. Analysis of a simulated data set has been presented for illustrative purposes. Finally, the different proposed methods have been compared via Monte Carlo simulation study
2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA.
Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information
Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells
Telomerase is expressed in the majority (>85%) of tumours, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterisation of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (match) and non-complementary (scramble or mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency which was not observed with scramble or mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled match oligonucleotides had no effect on survival, however, 111In-labeled match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-match oligonucleotides. Match oligonucleotides localised in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison to match oligonucleotides, 111In-scramble or 111In-mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells, and paves way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers
Optical Mie Scattering by DNA-Assembled Three-Dimensional Gold Nanoparticle Superlattice Crystals
9 pags., 5 figs.Programmable assemblies of gold nanoparticles engineered with DNA have intriguing optical properties such as Coulomb-interaction-driven strong coupling, polaritonic response in the visible range, and ultralow dispersion dielectric response in the infrared spectral range. In this work, we demonstrate the optical Mie resonances of individual microcrystals of DNA-gold nanoparticle superlattices. Broadband hyperspectral mapping of both transmission and dark-field scattering reveal a polarization-insensitive optical response with distinct spectral features in the visible and near-infrared ranges. Experimental observations are supported by numerical simulations of the microcrystals under a resonant effective medium approximation in the regime of capacitively coupled nanoparticles. The study identifies a universal characteristic optical response which is defined by a band of multipolar Mie resonances, which only weakly depend on the crystal size and light polarization. The use of gold superlattice microcrystals as scattering materials is of interest for fields such as complex nanophotonics, thermoplasmonics, photocatalysis, sensing, and nonlinear optics.D.M., H.J.S., A.G.K., and O.L.M. acknowledge financial support by the Leverhulme Trust through Research Grant RPG-2018-251.Peer reviewe
Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides.
Funder: University of CambridgeNatural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.ERC Horizon 2020 (grant agreement No 670405 and No 803326)
EPSRC Tier-2 capital grant EP/P020259/1.
Winton Advanced Research Programme for the Physics of Sustainability. Simons Foundation (Grant 601946).
Swedish research council, Vetenskapsrådet 2018-0023
Global economic burden of unmet surgical need for appendicitis
Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
- …