1,112 research outputs found

    SMEs' Confidentiality Concerns for Security Information Sharing

    Full text link
    Small and medium-sized enterprises are considered an essential part of the EU economy, however, highly vulnerable to cyberattacks. SMEs have specific characteristics which separate them from large companies and influence their adoption of good cybersecurity practices. To mitigate the SMEs' cybersecurity adoption issues and raise their awareness of cyber threats, we have designed a self-paced security assessment and capability improvement method, CYSEC. CYSEC is a security awareness and training method that utilises self-reporting questionnaires to collect companies' information about cybersecurity awareness, practices, and vulnerabilities to generate automated recommendations for counselling. However, confidentiality concerns about cybersecurity information have an impact on companies' willingness to share their information. Security information sharing decreases the risk of incidents and increases users' self-efficacy in security awareness programs. This paper presents the results of semi-structured interviews with seven chief information security officers of SMEs to evaluate the impact of online consent communication on motivation for information sharing. The results were analysed in respect of the Self Determination Theory. The findings demonstrate that online consent with multiple options for indicating a suitable level of agreement improved motivation for information sharing. This allows many SMEs to participate in security information sharing activities and supports security experts to have a better overview of common vulnerabilities. The final publication is available at Springer via https://doi.org/10.1007/978-3-030-57404-8_22Comment: 10 pages, 2 figures, 14th International Symposium on Human Aspects of Information Security & Assurance (HAISA 2020

    Use of a Cybex NORM dynamometer to assess muscle function in patients with thoracic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cachexia-anorexia syndrome impacts on patients' physical independence and quality of life. New treatments are required and need to be evaluated using acceptable and reliable outcome measures, e.g. the assessment of muscle function. The aims of this study were to: (i) examine the acceptability and reliability of the Cybex NORM dynamometer to assess muscle function in people with non-small cell lung cancer or mesothelioma; (ii) compare muscle function in this group with healthy volunteers and; (iii) explore changes in muscle function over one month.</p> <p>Methods</p> <p>The test consisted of 25 repetitions of isokinetic knee flexion and extension at maximal effort while seated on a Cybex NORM dynamometer. Strength and endurance for the quadriceps and hamstrings were assessed as peak torque and total work and an endurance ratio respectively. Thirteen patients and 26 volunteers completed the test on three separate visits. Acceptability was assessed by questionnaire, reliability by intraclass correlation coefficients (ICC) and tests of difference compared outcomes between and within groups.</p> <p>Results</p> <p>All subjects found the test acceptable. Peak torque and work done were reliable measures (ICC >0.80), but the endurance ratio was not. Muscle function did not differ significantly between the patient and a matched volunteer group or in either group when repeated after one month.</p> <p>Conclusion</p> <p>For patients with non-small cell lung cancer or mesothelioma, the Cybex NORM dynamometer provides an acceptable and reliable method of assessing muscle strength and work done. Muscle function appears to be relatively well preserved in this group and it appears feasible to explore interventions which aim to maintain or even improve this.</p

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore