164 research outputs found

    Geographical Analysis of Agro-Environmental Measures for Reduction of Chemical Inputs in Tuscany

    Get PDF
    The agro-environmental policies included in rural development plans are getting increasing importance in European Community strategies. These policies represent the meeting point between demand and supply of positive externalities. The difficulty of assessing real envi- ronmental efficiency is one of the elements characterizing agro-environmental measures. This difficulty is related to the identification of suitable parameters for evaluating farms according to their impact on the territory. This impact is mainly related both to chemical inputs and to the territorial characteristics of the farm. Different types of fertilizers, pesti- cides and herbicides are currently used in production processes; however, the analysis has focused only on nitrates, as they represent the most critical types of chemicals related to soil pollution. A case study is provided by analysis of agro-environmental measures in Tuscany for the reduction of nitrates in organic and integrated farms. Using spatial multicriteria analysis, integrated and organic farms were classified according to their geographical loca- tions and their release of nitrates into the soil. This classification permits the highlighting of farms that make the greatest economic efforts to reduce pollution and therefore it could determine environmental benefits. Considering that the trend of policy strategies is toward a reduction of monetary resources, the classification could help decision makers choose the right allocation of future resources

    Evaluating the governance and preparedness of the Lebanese health system for the COVID-19 pandemic: a qualitative study

    Get PDF
    From BMJ via Jisc Publications RouterHistory: received 2021-10-29, accepted 2022-05-16, ppub 2022-06, epub 2022-06-01Publication status: PublishedFunder: World Health Organization; FundRef: http://dx.doi.org/10.13039/100004423; Grant(s): 2002577199Objectives: This study aimed to assess the capacities and governance of Lebanon’s health system throughout the response to the COVID-19 pandemic until August 2020. Design: A qualitative study based on semi-structured interviews. Setting: Lebanon, February–August 2020. Participants: Selected participants were directly or indirectly involved in the national or organisational response to the COVID-19 pandemic in Lebanon. Results: A total of 41 participants were included in the study. ‘Hardware’ capacities of the system were found to be responsive yet deeply influenced by the challenging national context. The health workforce showed high levels of resilience, despite the shortage of medical staff and gaps in training at the early stages of the pandemic. The system infrastructure, medical supplies and testing capacities were sufficient, but the reluctance of the private sector in care provision and gaps in reimbursement of COVID-19 care by many health funding schemes were the main concerns. Moreover, the public health surveillance system was overwhelmed a few months after the start of the pandemic. As for the system ‘software’, there were attempts for a participatory governance mechanism, but the actual decision-making process was challenging with limited cooperation and strategic vision, resulting in decreased trust and increased confusion among communities. Moreover, the power imbalance between health actors and other stakeholders affected decision-making dynamics and the uptake of scientific evidence in policy-making. Conclusions: Interventions adopting a centralised and reactive approach were prominent in Lebanon’s response to the COVID-19 pandemic. Better public governance and different reforms are needed to strengthen the health system preparedness and capacities to face future health security threats

    Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.

    Get PDF
    OBJECTIVE: Little is known about the interaction of gliadin with intestinal epithelial cells and the mechanism(s) through which gliadin crosses the intestinal epithelial barrier. We investigated whether gliadin has any immediate effect on zonulin release and signaling. MATERIAL AND METHODS: Both ex vivo human small intestines and intestinal cell monolayers were exposed to gliadin, and zonulin release and changes in paracellular permeability were monitored in the presence and absence of zonulin antagonism. Zonulin binding, cytoskeletal rearrangement, and zonula occludens-1 (ZO-1) redistribution were evaluated by immunofluorescence microscopy. Tight junction occludin and ZO-1 gene expression was evaluated by real-time polymerase chain reaction (PCR). RESULTS: When exposed to gliadin, zonulin receptor-positive IEC6 and Caco2 cells released zonulin in the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein-protein interaction, and increased monolayer permeability. Pretreatment with the zonulin antagonist FZI/0 blocked these changes without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from celiac patients in remission expressed a sustained luminal zonulin release and increase in intestinal permeability that was blocked by FZI/0 pretreatment. Conversely, biopsies from non-celiac patients demonstrated a limited, transient zonulin release which was paralleled by an increase in intestinal permeability that never reached the level of permeability seen in celiac disease (CD) tissues. Chronic gliadin exposure caused down-regulation of both ZO-1 and occludin gene expression. CONCLUSIONS: Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules

    Assessment of aortic stiffness by cardiovascular magnetic resonance following the treatment of severe aortic stenosis by TAVI and surgical AVR

    Get PDF
    Aortic stiffness is increasingly used as an independent predictor of adverse cardiovascular outcomes. We sought to compare the impact of transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR) upon aortic vascular function using cardiovascular magnetic resonance (CMR) measurements of aortic distensibility and pulse wave velocity (PWV).A 1.5 T CMR scan was performed pre-operatively and at 6 m post-intervention in 72 patients (32 TAVI, 40 SAVR; age 76 ± 8 years) with high-risk symptomatic severe aortic stenosis. Distensibility of the ascending and descending thoracic aorta and aortic pulse wave velocity were determined at both time points. TAVI and SAVR patients were comparable for gender, blood pressure and left ventricular ejection fraction. The TAVI group were older (81 ± 6.3 vs. 72.8 ± 7.0 years, p < 0.05) with a higher EuroSCORE II (5.7 ± 5.6 vs. 1.5 ± 1.0 %, p < 0.05). At 6 m, SAVR was associated with a significant decrease in distensibility of the ascending aorta (1.95 ± 1.15 vs. 1.57 ± 0.68 × 10(-3)mmHg(-1), p = 0.044) and of the descending thoracic aorta (3.05 ± 1.12 vs. 2.66 ± 1.00 × 10(-3)mmHg(-1), p = 0.018), with a significant increase in PWV (6.38 ± 4.47 vs. 11.01 ± 5.75 ms(-1), p = 0.001). Following TAVI, there was no change in distensibility of the ascending aorta (1.96 ± 1.51 vs. 1.72 ± 0.78 × 10(-3)mmHg(-1), p = 0.380), descending thoracic aorta (2.69 ± 1.79 vs. 2.21 ± 0.79 × 10(-3)mmHg(-1), p = 0.181) nor in PWV (8.69 ± 6.76 vs. 10.23 ± 7.88 ms(-1), p = 0.301) at 6 m.Treatment of symptomatic severe aortic stenosis by SAVR but not TAVI was associated with an increase in aortic stiffness at 6 months. Future work should focus on the prognostic implication of these findings to determine whether improved patient selection and outcomes can be achieved

    Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat

    Get PDF
    Aims/hypothesis Impaired intestinal barrier function is observed in type I diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type I diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. Methods DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose mannitol test and ex vivo by measuring trans-epithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. heal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-beta (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. Results The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Conclusions/interpretation Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect

    OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    Full text link
    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, it will result in a striking advance in the study of the farthest planet of the Solar System. Furthermore, OSS will provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. It will consolidate the hypothesis of the origin of Triton as a KBO captured by Neptune, and improve our knowledge on the formation of the Solar system. The probe will embark instruments allowing precise tracking of the probe during cruise. It allows to perform the best controlled experiment for testing, in deep space, the General Relativity, on which is based all the models of Solar system formation. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the Solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimise the perturbation of the accelerometer measurement.Comment: 43 pages, 10 figures, Accepted to Experimental Astronomy, Special Issue Cosmic Vision. Revision according to reviewers comment

    The role of pulmonary arterial stiffness in COPD

    Get PDF
    AbstractCOPD is the second most common cause of pulmonary hypertension, and is a common complication of severe COPD with significant implications for both quality of life and mortality. However, the use of a rigid diagnostic threshold of a mean pulmonary arterial pressure (mPAP) of ≥25mHg when considering the impact of the pulmonary vasculature on symptoms and disease is misleading. Even minimal exertion causes oxygen desaturation and elevations in mPAP, with right ventricular hypertrophy and dilatation present in patients with mild to moderate COPD with pressures below the threshold for diagnosis of pulmonary hypertension. This has significant implications, with right ventricular dysfunction associated with poorer exercise capability and increased mortality independent of pulmonary function tests.The compliance of the pulmonary artery (PA) is a key component in decoupling the right ventricle from the pulmonary bed, allowing the right ventricle to work at maximum efficiency and protecting the microcirculation from large pressure gradients. PA stiffness increases with the severity of COPD, and correlates well with the presence of exercise induced pulmonary hypertension. A curvilinear relationship exists between PA distensibility and mPAP and pulmonary vascular resistance (PVR) with marked loss of distensibility before a rapid rise in mPAP and PVR occurs with resultant right ventricular failure. This combination of features suggests PA stiffness as a promising biomarker for early detection of pulmonary vascular disease, and to play a role in right ventricular failure in COPD. Early detection would open this up as a potential therapeutic target before end stage arterial remodelling occurs
    corecore