8 research outputs found

    Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease

    Get PDF
    Background No results of controlled trials are available for any of the few treatments offered to children with interstitial lung diseases (chILD). We evaluated hydroxychloroquine (HCQ) in a phase 2, prospective, multicentre, 1:1-randomized, double-blind, placebo-controlled, parallel-group/crossover trial. HCQ (START arm) or placebo were given for 4 weeks. Then all subjects received HCQ for another 4 weeks. In the STOP arm subjects already taking HCQ were randomized to 12 weeks of HCQ or placebo (= withdrawal of HCQ). Then all subjects stopped treatment and were observed for another 12 weeks. Results 26 subjects were included in the START arm, 9 in the STOP arm, of these four subjects participated in both arms. The primary endpoint, presence or absence of a response to treatment, assessed as oxygenation (calculated from a change in transcutaneous O 2 -saturation of ≄ 5%, respiratory rate ≄ 20% or level of respiratory support), did not differ between placebo and HCQ groups. Secondary endpoints including change of O 2 -saturation ≄ 3%, health related quality of life, pulmonary function and 6-min-walk-test distance, were not different between groups. Finally combining all placebo and all HCQ treatment periods did not identify significant treatment effects. Overall effect sizes were small. HCQ was well tolerated, adverse events were not different between placebo and HCQ. Conclusions Acknowledging important shortcomings of the study, including a small study population, the treatment duration, lack of outcomes like lung function testing below age of 6 years, the small effect size of HCQ treatment observed requires careful reassessments of prescriptions in everyday practice (EudraCT-Nr.: 2013-003714-40, www.clinicaltrialsregister.eu , registered 02.07.2013)

    International management platform for children's interstitial lung disease (chILD-EU)

    Get PDF
    BACKGROUND: Children's interstitial lung diseases (chILD) cover many rare entities, frequently not diagnosed or studied in detail. There is a great need for specialised advice and for internationally agreed subclassification of entities collected in a register.Our objective was to implement an international management platform with independent multidisciplinary review of cases at presentation for long-term follow-up and to test if this would allow for more accurate diagnosis. Also, quality and reproducibility of a diagnostic subclassification system were assessed using a collection of 25 complex chILD cases. METHODS: A web-based chILD management platform with a registry and biobank was successfully designed and implemented. RESULTS: Over a 3-year period, 575 patients were included for observation spanning a wide spectrum of chILD. In 346 patients, multidisciplinary reviews were completed by teams at five international sites (Munich 51%, London 12%, Hannover 31%, Ankara 1% and Paris 5%). In 13%, the diagnosis reached by the referring team was not confirmed by peer review. Among these, the diagnosis initially given was wrong (27%), imprecise (50%) or significant information was added (23%).The ability of nine expert clinicians to subcategorise the final diagnosis into the chILD-EU register classification had an overall exact inter-rater agreement of 59% on first assessment and after training, 64%. Only 10% of the 'wrong' answers resulted in allocation to an incorrect category. Subcategorisation proved useful but training is needed for optimal implementation. CONCLUSIONS: We have shown that chILD-EU has generated a platform to help the clinical assessment of chILD. TRIAL REGISTRATION NUMBER: Results, NCT02852928

    Pheno-seq - linking visual features and gene expression in 3D cell culture systems

    Get PDF
    Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity

    Pheno-seq - linking visual features and gene expression in 3D cell culture systems

    No full text
    Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity

    Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues

    No full text
    The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics
    corecore