50 research outputs found

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Fermi surface nesting and possibility of orbital ordering in FeO

    Full text link
    We study FeO, a Mott insulator in GGA and GGA+U approximations. In the GGA we find a multi-band metallic state with remarkable inter-band nesting between two t2gt_{2g} bands of Fermi surface, which signals possible instability towards an orbital ordered insulating phase. Such broken symmetry state, although has lower energy than the underlying homogeneous metallic state, but the gap magnitude is less than the experimentally observed optical gap. Therefore we incorporate the calculated value of on-site Coulomb repulsion U on orbital ordered state. We find that symmetry breaking and Coulomb correlations cooperate together to stabilize the system and give an insulating orbital ordered state, with the gap magnitude very close to the experimental value. We propose this method as a possible indication of orbital ordering in LDA and GGA calculations. We check our method with known examples of LiVO2_2 and LaMnO3_3.Comment: 4 pages, 4 figures, 1 tabl

    Next-to-next-to-leading order prediction for the photon-to-pion transition form factor

    Get PDF
    We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-pion transition form factor. Our approach is based on the predictive power of the conformal operator product expansion, which is valid for a vanishing β\beta-function in the so-called conformal scheme. The Wilson--coefficients appearing in the non-forward kinematics are then entirely determined from those of the polarized deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose different schemes to include explicitly also the conformal symmetry breaking term proportional to the β\beta-function, and discuss numerical predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references added, to appear in Phys. Rev.

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Состояние и перспективы развития фундаментальной теоретической физики (обоснование идеи создания научной школы по основаниям фундаментальной физики и математики)

    No full text
    corecore