11 research outputs found

    Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy

    Get PDF
    Nanoparticle (NP) chemotherapeutics hold great potential as radiosensitizers. Their unique properties, such as preferential accumulation in tumors and their ability to target tumors through molecular targeting ligands, are ideally suited for radiosensitization. We aimed to develop a molecularly targeted nanoparticle formulation of docetaxel (Dtxl) and evaluate its property as a radiosensitizer. Using a biodegradable and biocompatible lipid-polymer NP platform and folate as a molecular targeting ligand, we engineered a folate-targeted nanoparticle (FT-NP) formulation of Dtxl. These NPs have sizes of 72±4 nm and surface charges of −42±8 mV. Using folate receptor over-expressing KB cells and folate receptor low HTB-43 cells, we showed folate-mediated intracellular uptake of NPs. In vitro radiosensitization studies initially showed FT-NP is less effective than Dtxl as a radiosensitizer. However, the radiosensitization efficacy is dependent on the timing of radiotherapy. In vitro radiosensitization conducted with irradiation given at the optimal time (24 hours) showed FT-NP Dtxl is as effective as Dtxl. When FT-NP Dtxl is compared to Dtxl and non-targeted nanoparticle (NT-NP) Dtxl in vivo, FT-NP was found to be significantly more effective than Dtxl or NT-NP Dtxl as a radiosensitizer. We also confirmed that radiosensitization is dependent on timing of irradiation in vivo. In summary, FT-NP Dtxl is an effective radiosensitizer in folate-receptor over-expressing tumor cells. Time of irradiation is critical in achieving maximal efficacy with this nanoparticle platform. To the best of our knowledge, our report is the first to demonstrate the potential of molecularly targeted NPs as a promising new class of radiosensitizers

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    An integrative computational systems biology approach identifies differentially regulated dynamic transcriptome signatures which drive the initiation of human T helper cell differentiation

    No full text
    Abstract Background A proper balance between different T helper (Th) cell subsets is necessary for normal functioning of the adaptive immune system. Revealing key genes and pathways driving the differentiation to distinct Th cell lineages provides important insight into underlying molecular mechanisms and new opportunities for modulating the immune response. Previous computational methods to quantify and visualize kinetic differential expression data of three or more lineages to identify reciprocally regulated genes have relied on clustering approaches and regression methods which have time as a factor, but have lacked methods which explicitly model temporal behavior. Results We studied transcriptional dynamics of human umbilical cord blood T helper cells cultured in absence and presence of cytokines promoting Th1 or Th2 differentiation. To identify genes that exhibit distinct lineage commitment dynamics and are specific for initiating differentiation to different Th cell subsets, we developed a novel computational methodology (LIGAP) allowing integrative analysis and visualization of multiple lineages over whole time-course profiles. Applying LIGAP to time-course data from multiple Th cell lineages, we identified and experimentally validated several differentially regulated Th cell subset specific genes as well as reciprocally regulated genes. Combining differentially regulated transcriptional profiles with transcription factor binding site and pathway information, we identified previously known and new putative transcriptional mechanisms involved in Th cell subset differentiation. All differentially regulated genes among the lineages together with an implementation of LIGAP are provided as an open-source resource. Conclusions The LIGAP method is widely applicable to quantify differential time-course dynamics of many types of datasets and generalizes to any number of conditions. It summarizes all the time-course measurements together with the associated uncertainty for visualization and manual assessment purposes. Here we identified novel human Th subset specific transcripts as well as regulatory mechanisms important for the initiation of the Th cell subset differentiation.</p

    Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    Get PDF
    Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression—all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF
    1634Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4-3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h095%. The strictest constraint is h095%=4.7×10-26 from IGR J17062-6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are ϵ95%=3.1×10-7 and α95%=1.8×10-5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date.nonenoneAbbott R.; Abbott T.D.; Acernese F.; Ackley K.; Adams C.; Adhikari N.; Adhikari R.X.; Adya V.B.; Affeldt C.; Agarwal D.; Agathos M.; Agatsuma K.; Aggarwal N.; Aguiar O.D.; Aiello L.; Ain A.; Akutsu T.; Albanesi S.; Allocca A.; Altin P.A.; Amato A.; Anand C.; Anand S.; Ananyeva A.; Anderson S.B.; Anderson W.G.; Ando M.; Andrade T.; Andres N.; Andric T.; Angelova S.V.; Ansoldi S.; Antelis J.M.; Antier S.; Appert S.; Arai K.; Arai K.; Arai Y.; Araki S.; Araya A.; Araya M.C.; Areeda J.S.; Arene M.; Aritomi N.; Arnaud N.; Aronson S.M.; Arun K.G.; Asada H.; Asali Y.; Ashton G.; Aso Y.; Assiduo M.; Aston S.M.; Astone P.; Aubin F.; Austin C.; Babak S.; Badaracco F.; Bader M.K.M.; Badger C.; Bae S.; Bae Y.; Baer A.M.; Bagnasco S.; Bai Y.; Baiotti L.; Baird J.; Bajpai R.; Ball M.; Ballardin G.; Ballmer S.W.; Balsamo A.; Baltus G.; Banagiri S.; Bankar D.; Barayoga J.C.; Barbieri C.; Barish B.C.; Barker D.; Barneo P.; Barone F.; Barr B.; Barsotti L.; Barsuglia M.; Barta D.; Bartlett J.; Barton M.A.; Bartos I.; Bassiri R.; Basti A.; Bawaj M.; Bayley J.C.; Baylor A.C.; Bazzan M.; Becsy B.; Bedakihale V.M.; Bejger M.; Belahcene I.; Benedetto V.; Beniwal D.; Bennett T.F.; Bentley J.D.; Benyaala M.; Bergamin F.; Berger B.K.; Bernuzzi S.; Bersanetti D.; Bertolini A.; Betzwieser J.; Beveridge D.; Bhandare R.; Bhardwaj U.; Bhattacharjee D.; Bhaumik S.; Bilenko I.A.; Billingsley G.; Bini S.; Birney R.; Birnholtz O.; Biscans S.; Bischi M.; Biscoveanu S.; Bisht A.; Biswas B.; Bitossi M.; Bizouard M.-A.; Blackburn J.K.; Blair C.D.; Blair D.G.; Blair R.M.; Bobba F.; Bode N.; Boer M.; Bogaert G.; Boldrini M.; Bonavena L.D.; Bondu F.; Bonilla E.; Bonnand R.; Booker P.; Boom B.A.; Bork R.; Boschi V.; Bose N.; Bose S.; Bossilkov V.; Boudart V.; Bouffanais Y.; Bozzi A.; Bradaschia C.; Brady P.R.; Bramley A.; Branch A.; Branchesi M.; Brau J.E.; Breschi M.; Briant T.; Briggs J.H.; Brillet A.; Brinkmann M.; Brockill P.; Brooks A.F.; Brooks J.; Brown D.D.; Brunett S.; Bruno G.; Bruntz R.; Bryant J.; Bulik T.; Bulten H.J.; Buonanno A.; Buscicchio R.; Buskulic D.; Buy C.; Byer R.L.; Cadonati L.; Cagnoli G.; Cahillane C.; Bustillo J.C.; Callaghan J.D.; Callister T.A.; Calloni E.; Cameron J.; Camp J.B.; Canepa M.; Canevarolo S.; Cannavacciuolo M.; Cannon K.C.; Cao H.; Cao Z.; Capocasa E.; Capote E.; Carapella G.; Carbognani F.; Carlin J.B.; Carney M.F.; Carpinelli M.; Carrillo G.; Carullo G.; Carver T.L.; Diaz J.C.; Casentini C.; Castaldi G.; Caudill S.; Cavaglia M.; Cavalier F.; Cavalieri R.; Ceasar M.; Cella G.; Cerda-Duran P.; Cesarini E.; Chaibi W.; Chakravarti K.; Subrahmanya S.C.; Champion E.; Chan C.-H.; Chan C.; Chan C.L.; Chan K.; Chan M.; Chandra K.; Chanial P.; Chao S.; Charlton P.; Chase E.A.; Chassande-Mottin E.; Chatterjee C.; Chatterjee D.; Chatterjee D.; Chaturvedi M.; Chaty S.; Chen C.; Chen H.Y.; Chen J.; Chen K.; Chen X.; Chen Y.-B.; Chen Y.-R.; Chen Z.; Cheng H.; Cheong C.K.; Cheung H.Y.; Chia H.Y.; Chiadini F.; Chiang C.-Y.; Chiarini G.; Chierici R.; Chincarini A.; Chiofalo M.L.; Chiummo A.; Cho G.; Cho H.S.; Choudhary R.K.; Choudhary S.; Christensen N.; Chu H.; Chu Q.; Chu Y.-K.; Chua S.; Chung K.W.; Ciani G.; Ciecielag P.; Cieslar M.; Cifaldi M.; Ciobanu A.A.; Ciolfi R.; Cipriano F.; Cirone A.; Clara F.; Clark E.N.; Clark J.A.; Clarke L.; Clearwater P.; Clesse S.; Cleva F.; Coccia E.; Codazzo E.; Cohadon P.-F.; Cohen D.E.; Cohen L.; Colleoni M.; Collette C.G.; Colombo A.; Colpi M.; Compton C.M.; Constancio M.; Conti L.; Cooper S.J.; Corban P.; Corbitt T.R.; Cordero-Carrion I.; Corezzi S.; Corley K.R.; Cornish N.; Corre D.; Corsi A.; Cortese S.; Costa C.A.; Cotesta R.; Coughlin M.W.; Coulon J.-P.; Countryman S.T.; Cousins B.; Couvares P.; Coward D.M.; Cowart M.J.; Coyne D.C.; Coyne R.; Creighton J.D.E.; Creighton T.D.; Criswell A.W.; Croquette M.; Crowder S.G.; Cudell J.R.; Cullen T.J.; Cumming A.; Cummings R.; Cunningham L.; Cuoco E.; Curylo M.; Dabadie P.; Canton T.D.; Dall'Osso S.; Dalya G.; Dana A.; Daneshgaranbajastani L.M.; D'Angelo B.; Danilishin S.; D'Antonio S.; Danzmann K.; Darsow-Fromm C.; Dasgupta A.; Datrier L.E.H.; Datta S.; Dattilo V.; Dave I.; Davier M.; Davies G.S.; Davis D.; Davis M.C.; Daw E.J.; Dean R.; Debra D.; Deenadayalan M.; Degallaix J.; De Laurentis M.; Deleglise S.; Del Favero V.; De Lillo F.; De Lillo N.; Del Pozzo W.; Demarchi L.M.; De Matteis F.; D'Emilio V.; Demos N.; Dent T.; Depasse A.; De Pietri R.; De Rosa R.; De Rossi C.; Desalvo R.; De Simone R.; Dhurandhar S.; Diaz M.C.; Diaz-Ortiz M.; Didio N.A.; Dietrich T.; Di Fiore L.; Di Fronzo C.; Di Giorgio C.; Di Giovanni F.; Di Giovanni M.; Di Girolamo T.; Di Lieto A.; Ding B.; Di Pace S.; Di Palma I.; Di Renzo F.; Divakarla A.K.; Dmitriev A.; Doctor Z.; D'Onofrio L.; Donovan F.; Dooley K.L.; Doravari S.; Dorrington I.; Drago M.; Driggers J.C.; Drori Y.; Ducoin J.-G.; Dupej P.; Durante O.; D'Urso D.; Duverne P.-A.; Dwyer S.E.; Eassa C.; Easter P.J.; Ebersold M.; Eckhardt T.; Eddolls G.; Edelman B.; Edo T.B.; Edy O.; Effler A.; Eguchi S.; Eichholz J.; Eikenberry S.S.; Eisenmann M.; Eisenstein R.A.; Ejlli A.; Engelby E.; Enomoto Y.; Errico L.; Essick R.C.; Estelles H.; Estevez D.; Etienne Z.; Etzel T.; Evans M.; Evans T.M.; Ewing B.E.; Fafone V.; Fair H.; Fairhurst S.; Farah A.M.; Farinon S.; Farr B.; Farr W.M.; Farrow N.W.; Fauchon-Jones E.J.; Favaro G.; Favata M.; Fays M.; Fazio M.; Feicht J.; Fejer M.M.; Fenyvesi E.; Ferguson D.L.; Fernandez-Galiana A.; Ferrante I.; Ferreira T.A.; Fidecaro F.; Figura P.; Fiori I.; Fishbach M.; Fisher R.P.; Fittipaldi R.; Fiumara V.; Flaminio R.; Floden E.; Fong H.; Font J.A.; Fornal B.; Forsyth P.W.F.; Franke A.; Frasca S.; Frasconi F.; Frederick C.; Freed J.P.; Frei Z.; Freise A.; Frey R.; Fritschel P.; Frolov V.V.; Fronze G.G.; Fujii Y.; Fujikawa Y.; Fukunaga M.; Fukushima M.; Fulda P.; Fyffe M.; Gabbard H.A.; Gadre B.U.; Gair J.R.; Gais J.; Galaudage S.; Gamba R.; Ganapathy D.; Ganguly A.; Gao D.; Gaonkar S.G.; Garaventa B.; Garcia-Nunez C.; Garcia-Quiros C.; Garufi F.; Gateley B.; Gaudio S.; Gayathri V.; Ge G.-G.; Gemme G.; Gennai A.; George J.; Gerberding O.; Gergely L.; Gewecke P.; Ghonge S.; Ghosh A.; Ghosh A.; Ghosh S.; Ghosh S.; Giacomazzo B.; Giacoppo L.; Giaime J.A.; Giardina K.D.; Gibson D.R.; Gier C.; Giesler M.; Giri P.; Gissi F.; Glanzer J.; Gleckl A.E.; Godwin P.; Goetz E.; Goetz R.; Gohlke N.; Goncharov B.; Gonzalez G.; Gopakumar A.; Gosselin M.; Gouaty R.; Gould D.W.; Grace B.; Grado A.; Granata M.; Granata V.; Grant A.; Gras S.; Grassia P.; Gray C.; Gray R.; Greco G.; Green A.C.; Green R.; Gretarsson A.M.; Gretarsson E.M.; Griffith D.; Griffiths W.; Griggs H.L.; Grignani G.; Grimaldi A.; Grimm S.J.; Grote H.; Grunewald S.; Gruning P.; Guerra D.; Guidi G.M.; Guimaraes A.R.; Guixe G.; Gulati H.K.; Guo H.-K.; Guo Y.; Gupta A.; Gupta A.; Gupta P.; Gustafson E.K.; Gustafson R.; Guzman F.; Ha S.; Haegel L.; Hagiwara A.; Haino S.; Halim O.; Hall E.D.; Hamilton E.Z.; Hammond G.; Han W.-B.; Haney M.; Hanks J.; Hanna C.; Hannam M.D.; Hannuksela O.; Hansen H.; Hansen T.J.; Hanson J.; Harder T.; Hardwick T.; Haris K.; Harms J.; Harry G.M.; Harry I.W.; Hartwig D.; Hasegawa K.; Haskell B.; Hasskew R.K.; Haster C.-J.; Hattori K.; Haughian K.; Hayakawa H.; Hayama K.; Hayes F.J.; Healy J.; Heidmann A.; Heidt A.; Heintze M.C.; Heinze J.; Heinzel J.; Heitmann H.; Hellman F.; Hello P.; Helmling-Cornell A.F.; Hemming G.; Hendry M.; Heng I.S.; Hennes E.; Hennig J.; Hennig M.H.; Hernandez A.G.; Vivanco F.H.; Heurs M.; Hild S.; Hill P.; Himemoto Y.; Hines A.S.; Hiranuma Y.; Hirata N.; Hirose E.; Ho W.C.G.; Hochheim S.; Hofman D.; Hohmann J.N.; Holcomb D.G.; Holland N.A.; Hollows I.J.; Holmes Z.J.; Holt K.; Holz D.E.; Hong Z.; Hopkins P.; Hough J.; Hourihane S.; Howell E.J.; Hoy C.G.; Hoyland D.; Hreibi A.; Hsieh B.-H.; Hsu Y.; Huang G.-Z.; Huang H.-Y.; Huang P.; Huang Y.-C.; Huang Y.-J.; Huang Y.; Hubner M.T.; Huddart A.D.; Hughey B.; Hui D.C.Y.; Hui V.; Husa S.; Huttner S.H.; Huxford R.; Huynh-Dinh T.; Ide S.; Idzkowski B.; Iess A.; Ikenoue B.; Imam S.; Inayoshi K.; Ingram C.; Inoue Y.; Ioka K.; Isi M.; Isleif K.; Ito K.; Itoh Y.; Iyer B.R.; Izumi K.; Jaberianhamedan V.; Jacqmin T.; Jadhav S.J.; Jadhav S.P.; James A.L.; Jan A.Z.; Jani K.; Janquart J.; Janssens K.; Janthalur N.N.; Jaranowski P.; Jariwala D.; Jaume R.; Jenkins A.C.; Jenner K.; Jeon C.; Jeunon M.; Jia W.; Jin H.-B.; Johns G.R.; Jones A.W.; Jones D.I.; Jones J.D.; Jones P.; Jones R.; Jonker R.J.G.; Ju L.; Jung P.; Jung K.; Junker J.; Juste V.; Kaihotsu K.; Kajita T.; Kakizaki M.; Kalaghatgi C.V.; Kalogera V.; Kamai B.; Kamiizumi M.; Kanda N.; Kandhasamy S.; Kang G.; Kanner J.B.; Kao Y.; Kapadia S.J.; Kapasi D.P.; Karat S.; Karathanasis C.; Karki S.; Kashyap R.; Kasprzack M.; Kastaun W.; Katsanevas S.; Katsavounidis E.; Katzman W.; Kaur T.; Kawabe K.; Kawaguchi K.; Kawai N.; Kawasaki T.; Kefelian F.; Keitel D.; Key J.S.; Khadka S.; Khalili F.Y.; Khan S.; Khazanov E.A.; Khetan N.; Khursheed M.; Kijbunchoo N.; Kim C.; Kim J.C.; Kim J.; Kim K.; Kim W.S.; Kim Y.-M.; Kimball C.; Kimura N.; Kinley-Hanlon M.; Kirchhoff R.; Kissel J.S.; Kita N.; Kitazawa H.; Kleybolte L.; Klimenko S.; Knee A.M.; Knowles T.D.; Knyazev E.; Koch P.; Koekoek G.; Kojima Y.; Kokeyama K.; Koley S.; Kolitsidou P.; Kolstein M.; Komori K.; Kondrashov V.; Kong A.K.H.; Kontos A.; Koper N.; Korobko M.; Kotake K.; Kovalam M.; Kozak D.B.; Kozakai C.; Kozu R.; Kringel V.; Krishnendu N.V.; Krolak A.; Kuehn G.; Kuei F.; Kuijer P.; Kumar A.; Kumar P.; Kumar R.; Kumar R.; Kume J.; Kuns K.; Kuo C.; Kuo H.-S.; Kuromiya Y.; Kuroyanagi S.; Kusayanagi K.; Kuwahara S.; Kwak K.; Lagabbe P.; Laghi D.; Lalande E.; Lam T.L.; Lamberts A.; Landry M.; Lane B.B.; Lang R.N.; Lange J.; Lantz B.; La Rosa I.; Lartaux-Vollard A.; Lasky P.D.; Laxen M.; Lazzarini A.; Lazzaro C.; Leaci P.; Leavey S.; Lecoeuche Y.K.; Lee H.K.; Lee H.M.; Lee H.W.; Lee J.; Lee K.; Lee R.; Lehmann J.; Lemaitre A.; Leonardi M.; Leroy N.; Letendre N.; Levesque C.; Levin Y.; Leviton J.N.; Leyde K.; Li A.K.Y.; Li B.; Li J.; Li K.L.; Li T.G.F.; Li X.; Lin C.-Y.; Lin F.-K.; Lin F.-L.; Lin H.L.; Lin L.C.-C.; Linde F.; Linker S.D.; Linley J.N.; Littenberg T.B.; Liu G.C.; Liu J.; Liu K.; Liu X.; Llamas F.; Llorens-Monteagudo M.; Lo R.K.L.; Lockwood A.; London L.T.; Longo A.; Lopez D.; Portilla M.L.; Lorenzini M.; Loriette V.; Lormand M.; Losurdo G.; Lott T.P.; Lough J.D.; Lousto C.O.; Lovelace G.; Lucaccioni J.F.; Luck H.; Lumaca D.; Lundgren A.P.; Luo L.-W.; Lynam J.E.; Macas R.; Macinnis M.; Macleod D.M.; Macmillan I.A.O.; Macquet A.; Hernandez I.M.; Magazzu C.; Magee R.M.; Maggiore R.; Magnozzi M.; Mahesh S.; Majorana E.; Makarem C.; Maksimovic I.; Maliakal S.; Malik A.; Man N.; Mandic V.; Mangano V.; Mango J.L.; Mansell G.L.; Manske M.; Mantovani M.; Mapelli M.; Marchesoni F.; Marchio M.; Marion F.; Mark Z.; Marka S.; Marka Z.; Markakis C.; Markosyan A.S.; Markowitz A.; Maros E.; Marquina A.; Marsat S.; Martelli F.; Martin I.W.; Martin R.M.; Martinez M.; Martinez V.A.; Martinez V.; Martinovic K.; Martynov D.V.; Marx E.J.; Masalehdan H.; Mason K.; Massera E.; Masserot A.; Massinger T.J.; Masso-Reid M.; Mastrogiovanni S.; Matas A.; Mateu-Lucena M.; Matichard F.; Matiushechkina M.; Mavalvala N.; McCann J.J.; McCarthy R.; McClelland D.E.; McClincy P.K.; McCormick S.; McCuller L.; McGhee G.I.; McGuire S.C.; McIsaac C.; McIver J.; McRae T.; McWilliams S.T.; Meacher D.; Mehmet M.; Mehta A.K.; Meijer Q.; Melatos A.; Melchor D.A.; Mendell G.; Menendez-Vazquez A.; Menoni C.S.; Mercer R.A.; Mereni L.; Merfeld K.; Merilh E.L.; Merritt J.D.; Merzougui M.; Meshkov S.; Messenger C.; Messick C.; Meyers P.M.; Meylahn F.; Mhaske A.; Miani A.; Miao H.; Michaloliakos I.; Michel C.; Michimura Y.; Middleton H.; Milano L.; Miller A.L.; Miller A.; Miller B.; Millhouse M.; Mills J.C.; Milotti E.; Minazzoli O.; Minenkov Y.; Mio N.; Mir L.M.; Miravet-Tenes M.; Mishra C.; Mishra T.; Mistry T.; Mitra S.; Mitrofanov V.P.; Mitselmakher G.; Mittleman R.; Miyakawa O.; Miyamoto A.; Miyazaki Y.; Miyo K.; Miyoki S.; Mo G.; Moguel E.; Mogushi K.; Mohapatra S.R.P.; Mohite S.R.; Molina I.; Molina-Ruiz M.; Mondin M.; Montani M.; Moore C.J.; Moraru D.; Morawski F.; More A.; Moreno C.; Moreno G.; Mori Y.; Morisaki S.; Moriwaki Y.; Mours B.; Mow-Lowry C.M.; Mozzon S.; Muciaccia F.; Mukherjee A.; Mukherjee D.; Mukherjee S.; Mukherjee S.; Mukherjee S.; Mukund N.; Mullavey A.; Munch J.; Muniz E.A.; Murray P.G.; Musenich R.; Muusse S.; Nadji S.L.; Nagano K.; Nagano S.; Nagar A.; Nakamura K.; Nakano H.; Nakano M.; Nakashima R.; Nakayama Y.; Napolano V.; Nardecchia I.; Narikawa T.; Naticchioni L.; Nayak B.; Nayak R.K.; Negishi R.; Neil B.F.; Neilson J.; Nelemans G.; Nelson T.J.N.; Nery M.; Neubauer P.; Neunzert A.; Ng K.Y.; Ng S.W.S.; Nguyen C.; Nguyen P.; Nguyen T.; Quynh L.N.; Ni W.-T.; Nichols S.A.; Nishizawa A.; Nissanke S.; Nitoglia E.; Nocera F.; Norman M.; North C.; Nozaki S.; Nuttall L.K.; Oberling J.; O'Brien B.D.; Obuchi Y.; O'Dell J.; Oelker E.; Ogaki W.; Oganesyan G.; Oh J.J.; Oh K.; Oh S.H.; Ohashi M.; Ohishi N.; Ohkawa M.; Ohme F.; Ohta H.; Okada M.A.; Okutani Y.; Okutomi K.; Olivetto C.; Oohara K.; Ooi C.; Oram R.; O'Reilly B.; Ormiston R.G.; Ormsby N.D.; Ortega L.F.; O'Shaughnessy R.; O'Shea E.; Oshino S.; Ossokine S.; Osthelder C.; Otabe S.; Ottaway D.J.; Overmier H.; Pace A.E.; Pagano G.; Page M.A.; Pagliaroli G.; Pai A.; Pai S.A.; Palamos J.R.; Palashov O.; Palomba C.; Pan H.; Pan K.; Panda P.K.; Pang H.; Pang P.T.H.; Pankow C.; Pannarale F.; Pant B.C.; Panther F.H.; Paoletti F.; Paoli A.; Paolone A.; Parisi A.; Park H.; Park J.; Parker W.; Pascucci D.; Pasqualetti A.; Passaquieti R.; Passuello D.; Patel M.; Pathak M.; Patricelli B.; Patron A.S.; Patrone S.; Paul S.; Payne E.; Pedraza M.; Pegoraro M.; Pele A.; Arellano F.E.P.; Penn S.; Perego A.; Pereira A.; Pereira T.; Perez C.J.; Perigois C.; Perkins C.C.; Perreca A.; Perries S.; Petermann J.; Petterson D.; Pfeiffer H.P.; Pham K.A.; Phukon K.S.; Piccinni O.J.; Pichot M.; Piendibene M.; Piergiovanni F.; Pierini L.; Pierro V.; Pillant G.; Pillas M.; Pilo F.; Pinard L.; Pinto I.M.; Pinto M.; Piotrzkowski K.; Pirello M.; Pitkin M.D.; Placidi E.; Planas L.; Plastino W.; Pluchar C.; Poggiani R.; Polini E.; Pong D.Y.T.; Ponrathnam S.; Popolizio P.; Porter E.K.; Poulton R.; Powell J.; Pracchia M.; Pradier T.; Prajapati A.K.; Prasai K.; Prasanna R.; Pratten G.; Principe M.; Prodi G.A.; Prokhorov L.; Prosposito P.; Prudenzi L.; Puecher A.; Punturo M.; Puosi F.; Puppo P.; Purrer M.; Qi H.; Quetschke V.; Quitzow-James R.; Raab F.J.; Raaijmakers G.; Radkins H.; Radulesco N.; Raffai P.; Rail S.X.; Raja S.; Rajan C.; Ramirez K.E.; Ramirez T.D.; Ramos-Buades A.; Rana J.; Rapagnani P.; Rapol U.D.; Ray A.; Raymond V.; Raza N.; Razzano M.; Read J.; Rees L.A.; Regimbau T.; Rei L.; Reid S.; Reid S.W.; Reitze D.H.; Relton P.; Renzini A.; Rettegno P.; Rezac M.; Ricci F.; Richards D.; Richardson J.W.; Richardson L.; Riemenschneider G.; Riles K.; Rinaldi S.; Rink K.; Rizzo M.; Robertson N.A.; Robie R.; Robinet F.; Rocchi A.; Rodriguez S.; Rolland L.; Rollins J.G.; Romanelli M.; Romano R.; Romel C.L.; Romero-Rodriguez A.; Romero-Shaw I.M.; Romie J.H.; Ronchini S.; Rosa L.; Rose C.A.; Rosinska D.; Ross M.P.; Rowan S.; Rowlinson S.J.; Roy S.; Roy S.; Roy S.; Rozza D.; Ruggi P.; Ryan K.; Sachdev S.; Sadecki T.; Sadiq J.; Sago N.; Saito S.; Saito Y.; Sakai K.; Sakai Y.; Sakellariadou M.; Sakuno Y.; Salafia O.S.; Salconi L.; Saleem M.; Salemi F.; Samajdar A.; Sanchez E.J.; Sanchez J.H.; Sanchez L.E.; Sanchis-Gual N.; Sanders J.R.; Sanuy A.; Saravanan T.R.; Sarin N.; Sassolas B.; Satari H.; Sato S.; Sato T.; Sauter O.; Savage R.L.; Sawada T.; Sawant D.; Sawant H.L.; Sayah S.; Schaetzl D.; Scheel M.; Scheuer J.; Schiworski M.; Schmidt P.; Schmidt S.; Schnabel R.; Schneewind M.; Schofield R.M.S.; Schonbeck A.; Schulte B.W.; Schutz B.F.; Schwartz E.; Scott J.; Scott S.M.; Seglar-Arroyo M.; Sekiguchi T.; Sekiguchi Y.; Sellers D.; Sengupta A.S.; Sentenac D.; Seo E.G.; Sequino V.; Sergeev A.; Setyawati Y.; Shaffer T.; Shahriar M.S.; Shams B.; Shao L.; Sharma A.; Sharma P.; Shawhan P.; Shcheblanov N.S.; Shibagaki S.; Shikauchi M.; Shimizu R.; Shimoda T.; Shimode K.; Shinkai H.; Shishido T.; Shoda A.; Shoemaker D.H.; Shoemaker D.M.; Shyamsundar S.; Sieniawska M.; Sigg D.; Singer L.P.; Singh D.; Singh N.; Singha A.; Sintes A.M.; Sipala V.; Skliris V.; Slagmolen B.J.J.; Slaven-Blair T.J.; Smetana J.; Smith J.R.; Smith R.J.E.; Soldateschi J.; Somala S.N.; Somiya K.; Son E.J.; Soni K.; Soni S.; Sordini V.; Sorrentino F.; Sorrentino N.; Sotani H.; Soulard R.; Souradeep T.; Sowell E.; Spagnuolo V.; Spencer A.P.; Spera M.; Srinivasan R.; Srivastava A.K.; Srivastava V.; Staats K.; Stachie C.; Steer D.A.; Steinlechner J.; Steinlechner S.; Stops D.J.; Stover M.; Strain K.A.; Strang L.C.; Stratta G.; Strunk A.; Sturani R.; Stuver A.L.; Sudhagar S.; Sudhir V.; Sugimoto R.; Suh H.G.; Summerscales T.Z.; Sun H.; Sun L.; Sunil S.; Sur A.; Suresh J.; Sutton P.J.; Suzuki T.; Suzuki T.; Swinkels B.L.; Szczepanczyk M.J.; Szewczyk P.; Tacca M.; Tagoshi H.; Tait S.C.; Takahashi H.; Takahashi R.; Takamori A.; Takano S.; Takeda H.; Takeda M.; Talbot C.J.; Talbot C.; Tanaka H.; Tanaka K.; Tanaka K.; Tanaka T.; Tanaka T.; Tanasijczuk A.J.; Tanioka S.; Tanner D.B.; Tao D.; Tao L.; Martin E.N.T.S.; Taranto C.; Tasson J.D.; Telada S.; Tenorio R.; Terhune J.E.; Terkowski L.; Thirugnanasambandam M.P.; Thomas M.; Thomas P.; Thompson J.E.; Thondapu S.R.; Thorne K.A.; Thrane E.; Tiwari S.; Tiwari S.; Tiwari V.; Toivonen A.M.; Toland K.; Tolley A.E.; Tomaru T.; Tomigami Y.; Tomura T.; Tonelli M.; Torres-Forne A.; Torrie C.I.; E Melo I.T.; Toyra D.; Trapananti A.; Travasso F.; Traylor G.; Trevor M.; Tringali M.C.; Tripathee A.; Troiano L.; Trovato A.; Trozzo L.; Trudeau R.J.; Tsai D.S.; Tsai D.; Tsang K.W.; Tsang T.; Tsao J.-S.; Tse M.; Tso R.; Tsubono K.; Tsuchida S.; Tsukada L.; Tsuna D.; Tsutsui T.; Tsuzuki T.; Turbang K.; Turconi M.; Tuyenbayev D.; Ubhi A.S.; Uchikata N.; Uchiyama T.; Udall R.P.; Ueda A.; Uehara T.; Ueno K.; Ueshima G.; Unnikrishnan C.S.; Uraguchi F.; Urban A.L.; Ushiba T.; Utina A.; Vahlbruch H.; Vajente G.; Vajpeyi A.; Valdes G.; Valentini M.; Valsan V.; Van Bakel N.; Van Beuzekom M.; Van Den Brand J.F.J.; Van Den Broeck C.; Vander-Hyde D.C.; Van Der Schaaf L.; Van Heijningen J.V.; Vanosky J.; Van Putten M.H.P.M.; Van Remortel N.; Vardaro M.; Vargas A.F.; Varma V.; Vasuth M.; Vecchio A.; Vedovato G.; Veitch J.; Veitch P.J.; Venneberg J.; Venugopalan G.; Verkindt D.; Verma P.; Verma Y.; Veske D.; Vetrano F.; Vicere A.; Vidyant S.; Viets A.D.; Vijaykumar A.; Villa-Ortega V.; Vinet J.-Y.; Virtuoso A.; Vitale S.; Vo T.; Vocca H.; Von Reis E.R.G.; Von Wrangel J.S.A.; Vorvick C.; Vyatchanin S.P.; Wade L.E.; Wade M.; Wagner K.J.; Walet R.C.; Walker M.; Wallace G.S.; Wallace L.; Walsh S.; Wang J.; Wang J.Z.; Wang W.H.; Ward R.L.; Warner J.; Was M.; Washimi T.; Washington N.Y.; Watchi J.; Weaver B.; Webster S.A.; Weinert M.; Weinstein A.J.; Weiss R.; Weller C.M.; Wellmann F.; Wen L.; Wessels P.; Wette K.; Whelan J.T.; White D.D.; Whiting B.F.; Whittle C.; Wilken D.; Williams D.; Williams M.J.; Williamson A.R.; Willis J.L.; Willke B.; Wilson D.J.; Winkler W.; Wipf C.C.; Wlodarczyk T.; Woan G.; Woehler J.; Wofford J.K.; Wong I.C.F.; Wu C.; Wu D.S.; Wu H.; Wu S.; Wysocki D.M.; Xiao L.; Xu W.-R.; Yamada T.; Yamamoto H.; Yamamoto K.; Yamamoto K.; Yamamoto T.; Yamashita K.; Yamazaki R.; Yang F.W.; Yang L.; Yang Y.; Yang Y.; Yang Z.; Yap M.J.; Yeeles D.W.; Yelikar A.B.; Ying M.; Yokogawa K.; Yokoyama J.; Yokozawa T.; Yoo J.; Yoshioka T.; Yu H.; Yu H.; Yuzurihara H.; Zadrozny A.; Zanolin M.; Zeidler S.; Zelenova T.; Zendri J.-P.; Zevin M.; Zhan M.; Zhang H.; Zhang J.; Zhang L.; Zhang T.; Zhang Y.; Zhao C.; Zhao G.; Zhao Y.; Zhao Y.; Zhou R.; Zhou Z.; Zhu X.J.; Zhu Z.-H.; Zucker M.E.; Zweizig J.; Albayati A.C.; Altamirano D.; Bult P.; Chakrabarty D.; Ng M.; Ray P.S.; Sanna A.; Strohmayer T.E.Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Akutsu, T.; Albanesi, S.; Allocca, A.; Altin, P. A.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anders

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h_0^95%. The strictest constraint is h_0^95% = 4.7×10^−26 from IGR J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are ε^95% = 3.1 × 10^−7 and α^95% = 1.8 × 10^−5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    No full text

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J -statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J 1808.4 − 3658 , which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h 95 % 0 . The strictest constraint is h 95 % 0 = 4.7 × 10 − 26 from IGR J 17062 − 6143 . Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r -mode amplitude, the strictest of which are ε 95 % = 3.1 × 10 − 7 and α 95 % = 1.8 × 10 − 5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date
    corecore