353 research outputs found

    Wonderfully weird: the head anatomy of the armadillo ant, Tatuidris tatusia (Hymenoptera: Formicidae: Agroecomyrmecinae), with evolutionary implications

    Get PDF
    Tatuidris tatusia Brown & Kempf, 1968, the armadillo ant, is a morphologically unique species found in low to high elevation forests in regions of Central and South America. It is one of only two extant representatives of the subfamily Agroecomyrmecinae, and very little is known about the biology of these ants, which are almost exclusively collected from leaf litter and have rarely been seen alive. Here, we illuminate the functional morphology and evolution of this species via detailed anatomical documentation of their exceptionally modified head. We describe and illustrate the skeletomuscular system, digestive tract, and cephalic glands based on high-resolution micro-computed tomography scan data. We hypothesize that the modifications which produce the unusual “shield-like” head shape are the result of complex optimizations for mandibular power, physical protection, and balance. The most conspicuous cephalic features are the broadening of the frontal region and foreshortening of the postgenal region. The former characteristic is likely also associated with the lateral position of the antennal scrobe, the inverted antennal articulation, and the broad attachment surface for the mandibular adductor muscles. This head geometry also comes with a degree of internal restructuring of the tentorium and the antennal musculature, which have a unique configuration among ants studied so far. The mandibular blades, and their articulations and muscles, are highly distinctive compared with previously evaluated species. Using a 3D-printed model, we were able to hypothesize their entire range of motion as the mandibles fit tightly into the oral foramen. Finally, we compare T. tatusia across other related subfamilies and discuss the evolution of the Agroecomyrmecinae and other species-poor and phylogenetically isolated “relictual” lineages.journal articl

    Comparative morphology of male genital skeletomusculature in the Leptanillinae (Hymenoptera: Formicidae), with a standardized muscular terminology for the male genitalia of Hymenoptera

    Get PDF
    The male genitalia of the Insecta are famed for structural and functional diversity. Variation in this anatomical region shows ample phylogenetic signal, and this variation has proven indispensable for classification across the insects at multiple taxonomic ranks. However, in the ants (Hymenoptera: Formicidae) the male genital phenotype is ancillary to the morphology of the worker caste for systematic purposes. Ants of the enigmatic subfamily Leptanillinae are an exception, as males are easier to collect than workers. Ongoing systematic revision of the Leptanillinae must therefore rely upon the male phenotype – particularly the spectacular morphological profusion of the male genitalia. To thoroughly illuminate this anatomical region and aid comparative morphological research on ant male genitalia, we present a comparative morphological study of the male genitalia in nine exemplar lineages spanning the Leptanillinae, plus three outgroups representing other major clades of the Formicidae. We use micro-computed tomography (micro-CT) to generate 3D volumetric reconstructions of male genital skeletomusculature in these specimens. Our descriptions use new muscular terminology compatible with topographic main-group systems for the rest of the pterygote soma, and applicable to all Hymenoptera. We find that male genitalia in the Leptanillinae show an overall trend towards skeletomuscular simplification, with muscular reduction in some cases being unprecedented in ants, or even hymenopterans in general. In several lineages of the Leptanillinae we describe derivations of the male genitalia that are bizarre and unparalleled among the Hymenoptera. We conclude by discussing the functional implications of the often-extreme morphologies here observed

    The head anatomy of Protanilla lini (Hymenoptera: Formicidae: Leptanillinae), with a hypothesis of their mandibular movement

    Get PDF
    The hypogaeic ant subfamilies Leptanillinae and Martialinae likely form the sister group to the remainder of the extant Formicidae. In order to increase the knowledge of anatomy and functional morphology of these unusual and phylogenetically crucial ants, we document and describe in detail the cranium of a leptanilline, Protanilla lini Terayama, 2009. The mandibular articulation of the species differs greatly from that of other ants studied so far, and clearly represents a derived condition. We propose a mode of movement for the specialized mandibles that involves variable rotation and sophisticated locking mechanisms. While a wide opening gape and a unique articulation are characteristics of the mandibular movement of P. lini, the observed condition differs from the trap-jaw mechanisms occurring in other groups of ants, and we cannot, at present, confirm such a functional configuration. Protanilla lini displays hardly any plesiomorphies relative to the poneroformicine ants, with the possible exception of the absence of the torular apodeme. Instead, the species is characterized by a suite of apomorphic features related to its hypogaeic and specialized predatory lifestyle. This includes the loss of eyes and optic neuropils, a pronouncedly prognathous head, and the derived mandibular articulation. The present study is an additional stepping-stone on our way to reconstructing the cephalic ground plan of ants and will contribute to our understanding of ant evolution.info:eu-repo/semantics/publishedVersio

    Molecular phylogeny of Indo‐Pacific carpenter ants (Hymenoptera: Formicidae, Camponotus) reveals waves of dispersal and colonization from diverse source areas

    Full text link
    Ants that resemble Camponotus maculatus (Fabricius, 1782) present an opportunity to test the hypothesis that the origin of the Pacific island fauna was primarily New Guinea, the Philippines, and the Indo‐Malay archipelago (collectively known as Malesia). We sequenced two mitochondrial and four nuclear markers from 146 specimens from Pacific islands, Australia, and Malesia. We also added 211 specimens representing a larger worldwide sample and performed a series of phylogenetic analyses and ancestral area reconstructions. Results indicate that the Pacific members of this group comprise several robust clades that have distinctly different biogeographical histories, and they suggest an important role for Australia as a source of Pacific colonizations. Malesian areas were recovered mostly in derived positions, and one lineage appears to be Neotropical. Phylogenetic hypotheses indicate that the orange, pan‐Pacific form commonly identified as C. chloroticus Emery 1897 actually consists of two distantly related lineages. Also, the lineage on Hawaiʻi, which has been called C. variegatus (Smith, 1858), appears to be closely related to C. tortuganus Emery, 1895 in Florida and other lineages in the New World. In Micronesia and Polynesia the C. chloroticus‐like species support predictions of the taxon‐cycle hypothesis and could be candidates for human‐mediated dispersal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/1/cla12099-sup-0002-FigureS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/2/cla12099-sup-0003-FigureS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/3/cla12099-sup-0001-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/4/cla12099-sup-0004-FigureS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/5/cla12099-sup-0005-FigureS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/6/cla12099-sup-0006-FigureS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112260/7/cla12099.pd

    Evidence for the evolution of eusociality in stem ants and a systematic revision of †Gerontoformica (Hymenoptera: Formicidae)

    Get PDF
    It is generally assumed that Cretaceous stem ants were obligately eusocial, because of the presence of wingless adult females, yet the available evidence is ambiguous. Here, we report the syninclusion of a pupa and adult of a stem ant species from Mid-Cretaceous amber. As brood are immobile, the pupa was likely to have been transported by an adult. Therefore, the fossil substantiates the hypothesis that wingless females were cooperators, thus these were true ‘workers’. Re-examination of all described Cretaceous ant species reveals that winged–wingless diphenism – hence a variable dispersal capacity – may have been ancestral to the total clade of the ants, and that highly specialized worker-specific phenotypes evolved in parallel between the stem and crown groups. The soft-tissue preservation of the fossil is exceptional, demonstrating the possibility of analysing the development of the internal anatomy in stem ants. Based on the highest-resolution ”-CT scans of stem ants to date, we describe †Gerontoformica sternorhabda sp. nov., redescribe †G. gracilis, redefine the species group classification of †Gerontoformica, and provide a key to the species of the genus. Our work clarifies the species boundaries of †Gerontoformica and renders fossils relevant to the discussion of eusocial evolution in a way that has heretofore been intractable.journal articl

    The impact of land use on non-native species incidence and number in local assemblages worldwide.

    Get PDF
    While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions

    Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues

    Get PDF
    The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.United States. National Institutes of Health (1-U01-NS090473-01

    The Ascent of the Abundant: How Mutational Networks Constrain Evolution

    Get PDF
    Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit

    The future of hyperdiverse tropical ecosystems

    Get PDF
    The tropics contain the overwhelming majority of Earth’s biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity
    • 

    corecore