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Summary 

Dementia associated with cerebrovascular disease is common.  We previously found that 

almost 30% of elderly stroke survivors develop delayed dementia as post-stroke dementia 

(PSD), most of which was diagnosed as vascular dementia (VaD).  The pathological 

substrates associated with PSD or VaD are poorly understood, particularly those associated 

with executive dysfunction.  Three separate yet interconnecting circuits control executive 

function within the frontal lobe involving the dorsolateral prefrontal cortex (dlPFC), anterior 

cingulate cortex (ACC) and the orbitofrontal cortex (OFC). We used unbiased stereology 

along with immunohistological and related morphometric methods to examine densities 

and volumes of pyramidal neurones of the dlPFC, ACC and OFC in the frontal lobe from a 

total of 90 elderly subjects (age range 71-98 years).  Post-mortem brain tissues from PSD 

and post-stroke survivors with no dementianon-demented stroke survivors (PSND) were 

derived from our prospective Cognitive Function After Stroke study. but wWe also examined 

in parallel samples from ageing controls and similar age subjects pathologically diagnosed 

with Alzheimer’s disease (AD), and mixed AD and VaD dementia and VaD.   We found 

pyramidal cell volumes in layers III and V in the dlPFC of PSD and VaD and, of mixed and AD 

subjects to be reduced by as much as 40% compared to those in PSND and controls.  There 

were no significant changes in neuronal volumes in either the ACC or OFC.  Remarkably, 

pyramidal neurones within the OFC were also found to be smaller in size when compared to 

those in the other two neocortical regions.   To relate the cell changes to cognitive function, 

we noted significant correlations between neuronal volumes and total CAMCOG, 

orientation and memory scores and clinical dementia ratings.  Total estimated neuronal 

densities were not significantly changed between PSD and PSND groups or ageing controls 

in any of the three frontal regions.     In further morphometric analysis of the dlPFC, we 

showed that neither diffuse cerebral atrophy nor neocortical thickness explained the 

selective neuronal volume effects.  We also noted that neurofilament protein SMI31 

immunoreactivity was increased in PSD and VaD compared to PSND subjects and correlated 

with decreased neuronal volumes in the PSD and VaD subjects.   Our findings indicate 

selective regional pyramidal cell atrophy in the dlPFC rather than neuronal density changes 

per se to be are associated with dementia and executive dysfunction in PSD and VaD.   The 
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changes in dlPFC pyramidal cells were not associated with neurofibrillary pathology 

suggesting there is a vascular basis for the observed highly selective neuronal atrophy.   

 

Key words: Ageing, Alzheimer’s disease, executive function, prefrontal cortex, post-stroke 

dementia, stroke, vascular dementia 
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INTRODUCTION 

It is estimated that 20% of older people suffer a stroke, and 30% of these individuals 

develop vascular dementia (VaD) or vascular cognitive impairment (Savva and Stephan, 

2010).  There is an approximately 9-fold increased risk of incident dementia immediately 

after the stroke and rising to a cumulative incidence of more than 23% within 10 years 

(Kokmen et al., 1996).   We previously reported that during the follow up of a mean time of 

3.8 years, more than 24% of elderly subjects had developed dementia following the first-

ever cerebral ischaemic event.  The underlying pathological processes determining which 

stroke survivors develop dementia and which remain cognitively stable are largely 

unknown.  Dementia occurring after stroke regardless of the underlying pathology included 

in AD or mixed dementia is described as post-stroke dementia (PSD) (Leys et al., 2005).  We 

have previously shown that the most common form of PSD fits the criteria for VaD, 

accounting for over 75% of all cases (Allan et al., 2011).  

PSD patients exhibit a decreased ability to perform certain executive functions 

(Pohjasvaara et al., 1998; Pohjasvaara et al., 2002), such as working memory, planning, 

orientation and problem solving.   This is thought to reflect changes in one or more of the 

three separate yet interconnecting pre-frontal circuits which control specific aspects of 

executive function;: the dorsolateral prefrontal cortex (dlPFC), the orbitofrontal cortex 

(OFC), and the anterior cingulate cortex (ACC) (Tekin and Cummings, 2002).  Previous 

studies have linked lesions in these fronto-subcortical circuits with the executive 

dysfunction commonly associated with VaD (Swartz et al., 2008), where pathological 

changes such as vascular damage and degeneration are thought to lead to white matter 

degeneration commonly found in the frontal lobes (Craggs et al., 2013; Ihara et al., 2010).  

The white matter changes have been linked to neuronal dysfunction and degeneration, 

proposing a potential mechanism for decline in executive function.   Pathological changes in 

the white matter of the frontal lobes or within the centrum semiovale in cerebrovascular 

disease suggests that damaged connections between these circuits may reflect loss of the 

large pyramidal cells (Ihara et al., 2010; Ishii et al., 1986; Pasquier et al., 2000).   It is 

therefore plausible that similar factors affect those who develop PSD or vascular cognitive 

impairment (Burton et al., 2003) involving the pre-frontal circuits which may disrupt 

executive function including working memory. 
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In previousior studies, we reported that hippocampal pyramidal neurones in PSD 

exhibited reduced soma volumes compared to non-demented stroke survivors and ageing 

controls, and that this reduction was related to global cognitive dysfunction and memory 

impairment (Gemmell et al., 2012).   We hypothesised that similar changes in the 

glutamatergic pyramidal neurones (Kirvell et al., 2010) in layers III (which largely project 

within the neocortex) and V which make up the frontal circuits and connect to subcortical 

pathways to the basal ganglia and thalamus (Khundakar et al., 2009; Tekin and Cummings, 

2002) may relate to executive dysfunction in dementia caused by cerebrovascular disease 

(Allan et al., 2011).  Prior investigators (Cotter et al., 2005; Rajkowska et al., 2005)  have 

reported layer specific reductions in pyramidal neurones of older depressed subjects, a 

syndrome postulated to have its basis in frontal vascular pathology (Alexopoulos et al., 

1997; Ongur et al., 1998).  Thus the question arises whether there is a similar global loss in 

PSD, in which depression is also manifested (Allan et al., 2013).   We therefore investigated 

the status of pyramidal neurones in the dlPFC, OFC and the ACC as indicators of disease 

mechanisms driving executive dysfunction and related cognitive status in elderly stroke 

survivors.  By also analysing pyramidal neurones in these three circuits in subjects with VaD, 

Alzheimer’s disease (AD) and mixed AD and VaD dementia, we aimed to elucidate the 

specific roles of different circuit neurones within key regions controlling frontal lobe 

function(s). 

 

MATERIALS AND METHODS 

Study Design and subject demographics and clinicopathological assessment 

We analysed brains from a total of 90 subjects.  The demographic details of all the 

subjects are shown in Table 1.  Brains from post-stroke survivors were acquired at autopsy 

from the stroke subjects recruited as part of the Cognitive Function After Stroke (CogFAST) 

study (Allan et al., 2011; Gemmell et al., 2012).  Briefly, first time stroke patients >75 years 

old who remained cognitively intact 3 months post-stroke received baseline and annual 

comprehensive clinical and neuropsychological assessments as described previously 

(Desmond et al., 2000).  The neuropsychometric assessments  included the revised 

Cambridge Cognition Examination (CAMCOG) battery (Huppert et al., 1995), from which we 
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generated sub-scores for cognitive domains including memory, orientation and other 

domains of executive function.   Stroke survivors were diagnosed as having post stroke 

dementia (PSD) if they had met the Diagnostic and statistical manual of mental disorders 

(DSM) IV criteria for dementia before death.  Stroke survivors who did not meet DSM IV 

criteria for dementia and had MMSE scores >25 and CAMCOG scores > 85 were designated 

as post-stroke no dementia (PSND) (Table 2).  Subjects were excluded from entry to the 

study if they i) were younger than 75 years old, ii) had significant neurological deficits or 

physical illness, iii) had MMSE <24 points and iv) were diagnosed with dementia (DSM IV).    

Brains from the AD, VaD and mixed dementia subjects were obtained from our 

prospective memory clinic studies as described previously (Ballard et al., 2000).   Ageing 

control subjects aged >70 years were either part of previous prospective studies or referrals 

to the Newcastle Brain Tissue Resource (NBTR).    They were only selected to include in this 

study if they had not been diagnosed with any neurological or psychiatric illness and did not 

have cognitive impairment.   Ethical approvals for the CogFAST and prospective dementia 

studies were granted by local research ethics committees of the Newcastle upon Tyne 

Foundation Hospitals Trust.  Permission for use of brains for post-mortem research was also 

granted by consent from next of kin or family.  All the brain tissues were retained in and 

obtained from the NBTR.   

 

Neuropathological examination  

In general, nNeuropathological assessment was carried out as described previously (Allan et 

al., 2011; Gemmell et al., 2012).   Briefly, haematoxylin-eosin staining was used for 

assessment of structural integrity and infarcts, Nissl and luxol fast blue staining for cellular 

patterns and myelin loss, Bielschowsky’s silver impregnation and amyloid β for CERAD rating 

of neuritic plaques, Gallays for neuritic pathology, and tau immunohistochemistry for Braak 

staging of neurofibrillary tangles.  A clinical diagnosis of VaD was made when there were 

multiple or cystic infarcts, lacunae, microinfarcts and small vessel disease, and Braak stage 

<III (Kalaria et al., 2004).  A clinical diagnosis of AD was confirmed on evidence of significant 

Alzheimer’s- type pathology, namely a Braak stage V-VI score, a moderate-severe CERAD 

score and an absence of significant vascular pathology.  Mixed dementia was classified 
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when there was sufficient degree of pathology to reach Braak V-VI and significant vascular 

pathology (Ballard et al., 2000).   Vascular pathology scores were derived from the presence 

of vascular lesions in brain areas, including the frontal lobe at the level of the olfactory 

bulbs, temporal lobe at level of the anterior hippocampus, and basal ganglia at level of 

mamillary body.   Lesions including arteriolosclerosis, cerebral amyloid angiopathy, 

perivascular haemosiderin leakage, perivascular space dilatation in the deep and 

juxtacortical white matter (WM), myelin loss, and cortical micro (<0.5 cm) and large (>0.5 

cm) infarcts were recorded with increasing severity resulting in greater scores (Deramecourt 

et al., 2012).  Tissues from control subjects bearing insufficient pathology to reach threshold 

for any diagnosis for dementia was classified as ‘no pathological diagnosis’ (Table 1).   

Except for the neuropathological examination (by TMP and RK), all of the morphological 

analyses were always undertaken under operator blinded conditions.  Samples were 

appropriately identified with coded sequential numbers.  In addition, at least 2 each positive 

and negative controls were included in the sample pool.   

 

Unbiased Stereological analyses 

Paraffin-embedded coronal blocks were selected to include Brodmann areas 9, 11, and 24 

containing the dlPFC, ACC and OFC respectively (Perry and Oakley, 1993).   Thirty µm-thick 

sections were cut using a microtome and stained with cresyl fast violet using an established 

protocol (Khundakar et al., 2009) and  then viewed using a Zeiss Axioplan Photomicroscope. 

Cortical layers III and V were distinguished from other layers by the presence of larger 

pyramidal neurones (Figure 1) according to (Khundakar et al., 2009).  The reference area 

was mapped out at x2.5 objective using Visiopharm Integrator System (VIS) software. 

Approximately 40 frames were measured using a uniform random sampling technique 

within the reference area.  At least three sections were analysed from each case, resulting in 

> 100 neurones analysed per case which brought the sampling error to an acceptable level 

of CE of P=<0.15.   

Morphometric analysis of neuronal volumes and densities was carried out as 

described previously (Gemmell et al., 2012).  Estimation of pyramidal neurone density was 

achieved using the optical disector method at 100x magnification. Although ideally we 

Commented [n6]: This implies that some controls had 
significant pathology of some sort but I think they didn’t? 

Commented [n7]: Controls for quality of staining? 



                                                                                                                                      Foster V et al 2013 
 

8 
 

would have estimated neuronal number, it is not possible to demarcate these prefrontal 

brain areas in order to estimate their volumes and so we used neurone density instead as 

previously REFS KHUNDAKAR.  Neuronal volumes were estimated using an independent 

uniform random orientated nucleator probe (Gundersen, 1988) (Figure 2). Neuronal density 

was calculated from the number of cells counted within a disector box using the following 

equation (Sterio, 1984):    
 

  where: Nv = Numerical density,  p- = Disector samples,  

Q- = Number of objects counted,  P = Total number of dissectors and  V = Disector box 

volume.             

 

Conventional two-dimensional analyses 

Using a selection of the same Nissl stained sections as for the 3D stereological analysis 

images of randomly selected pyramidal neurones in cortical layers III and V of the dlPFC and 

OFC were taken using a Zeiss Axioplan 2 microscope (Carl Zeiss Microscopy, Thornwood, NY, 

USA) and image capture software (Infinity Capture v4.6.0, Lumenera Corporation, Ontario, 

Canada) at 40x magnification. The length and width of each neurone was recorded at their 

longest and widest points. Using these values it was possible to work out the length to width 

ratio of each neurone using the following formula:  Ratio=Length/width.  Images were also 

analysed using Image Pro analysis (Craggs et al., 2013; Yamamoto et al., 2009).   

To confirm volume difference observed between the OFC and the dlPFC, we also 

performed analyses using 2D techniques. Images of individual pyramidal neurones in the 

dlPFC and OFC from control cases were delineated using the wand tool. The number of 

pixels within the area of the delineated cell was assessed and defined using Image Pro Plus. 

Neurones containing more pixels were deemed to have a larger volume than those 

containing fewer pixels. 

We determined the degree of atrophy in the dlPFC of the brains from the PSND 

compared to those from PSD subjects.  Using the methods proposed by White and 

colleagues, we calculated a z score for atrophy using three markers for atrophy including the 

ratio of brain weight to intracranial volume, the ratio of cortical thickness to head diameter, 
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and neuronal loss (Gelber et al., 2012) (and personal correspondence).   Brain weights were 

recorded at post-mortem examination of the CogFAST cases.  Intracranial volume was 

measured from the MRI scans taken during the CogFAST study (Burton et al., 2003).  

Cortical thickness was assessed from the sulcus of Brodmann area 9 of the dlPFC at 

2.5x magnification.  Three measurements were taken from each side of the sulcus and 

averaged.  This was done to avoid any artefact which may result from sections that might 

have been cut obliquely with cortical depth appearing wider than actual size. 

Head diameter was derived from a population mean as established previously 

(Ching, 2007). Neuronal loss was scored on a 1-8 scale (1 no loss, 8 severe) in the region of 

the dlPFC. All raw data were converted into a Z score allowing for each individual marker to 

be compared to one another.  The equation Z= (x-u)/σ, where X= raw score, U= mean and 

σ=standard deviation was used.   Each marker was assigned a percentage weight indicating 

how much it‘s Z score would influence the final result (Gelber et al., 2012):  Brain weight vs. 

intracranial volume accounting for 50%,  cortical thickness vs. head diameter for 40% and 

neurone density as 10%.  

Additionally, we determined cortical thickness in another 60 Nissl stained cortical 

sections from the dlPFC (10 x 6 groups).  This was assessed by on screen measurements of 

the prefrontal cortex at 2.5X magnification using a Zeiss Axioplan Photomicroscope.  The 

sulcus of the relevant area (Brodmann area 9) was measured at 4-6 separate points.  To 

remove bias produced by potential variations in the angle of cut, cortical thickness 

measurements were taken from opposing sides of the sulcus. The value of each side was 

used to calculate an overall average for the cortical region.   Measurements were taken 

from the edge of the pial surface directly to the edge of the WM following the general 

direction of the neurones.  

 

Neurofilament protein immunohistochemical analyses  

Paraffin wax embedded tissue blocks containing the PFC and ACC were serially cut 

into 10μm or 30μm sections.  Tissue sections first underwent antigen retrieval by heating in 

the microwave with citrate buffer for 12 minutes before being quenched with TBS and 3% 
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hydrogen peroxide.  Sections were then blocked with serum of the secondary antibody 

before being immunostained with the primary antibody.  For the neurofilament protein 

markers, tissue sections were incubated in either monoclonal antibody AT8 to 

phosphorylated tau (dilution 1:2,000, Innogenetics, Autogen Bioclear, UK),  SMI31 

(1:50,000, Alpha Center, Maryland, US) or SMI32 (dilution 1:1,000, Convance, California, US) 

overnight.  Sections were then washed before being stained with the secondary antibody 

for 30 minutes.  After the final wash phase the immunocomplexes were detected with 

diaminobenzidine (DAB).  Each section stained with AT8 antibody was then qualitatively 

analysed and assigned a score out of 6 or quantified using 2-dimensional in vitro image 

analyses (Burke et al., 2013). SMI31 counts were performed on at least 10 images, taken at 

x10 magnification, of each case to quantify the level of damaged neurones within layers III 

and V of the dlPFC.  The 6 x 4 grids were superimposed onto the image to aid counting and 

any pyramidal neurone cell body positive for SMI31 immunoreactivty independent of 

intensity was counted.     

For the microvascular markers, 30μm thick serial sections were immunostained with 

antibodies to the Glucose Transporter 1 (GLUT1) (1:200, ThermoScientific UK), a marker for 

endothelial cells in microvessels.  GLUT1 immunostained microvessel profiles were then 

quantified by using 3 dimensional stereological analysis s described previously (Burke et al., 

2013).    

 

Quantification of white matter changes 

Ten μm coronal sections at the level which contains the dlPFC and OFC from the disease and 

control groups were stained with Luxol Fast Blue (LFB) and analysed using image pro as 

essentially described previously (Ihara et al., 2010).   The median grey level of each quartile 

was then calculated, for example; 14.4, 43.1, 71.9, 100.6 as an estimate of staining intensity.  

The value was then multiplied by the % area in each quartile to calculate the myelin loss 

index. 

For SMI32 WM analysis, Image Pro software (Mediacybernetics, USA) analysis 

software was used to calculate the quantity of staining, by measuring the total area of 
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immunoreactivity and expressing it as a percentage of area in 10 images (at 10 x 

magnification) of the white matter of all cases as a marker for axonal damage.  To correct 

for the apparent white matter changes, SMI32 immunoreactivity scores were normalised to 

myelin index scores. 

 

Quantification of microvascular changes  

To assess the degrees of arteriolosclerosis, sclerotic index (SI) and perivascular spaces were 

quantified in the grey and white matter vessels of disease cases and controls.  The Vascal 

programme (Yamamoto et al., 2009) was used to measure the external diameter (Dext) of 

the vessel and the diameter (Dint) of the lumen. These values were then used to calculate 

the SI and PVS for each vessel using the equation:  SI= 1 – (Dint/Dext) 

 

Statistical Analysis 

Statistical analysis was carried out using SPSS Version 19.0 with the level of significance set 

at p<0.05.  Normal distribution of values was first tested using the Shapiro-Wilk test.  In 

prior analysis, data found to be not normally distributed were analysed using non-

parametric methods.  Group means such as PSND, PSD, VaD and AD were compared using 

analysis of variance (ANOVA) with post hoc Tukey tests for normal data or Kruskall Wallis 

and the Mann-Whitney U tests for non-normally distributed values.  Spearman’s rank (r2) 

correlation was used to assess correlations between clinical and neuropsychometric 

variables or specific protein immunoreactivity measures and neuronal changes.   The 

correlation coefficients were expressed as r. 

 

RESULTS 

Clinicopathological features of the sample  

The mean ages at death were not different between the groups (Table 1).   To compare 

PSND subjects against those who developed delayed dementia (PSD), we had divided the 
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post-stroke cases into two groups based on cognitive status (Table 2), which was 

determined at the mean time of 7.6 months prior to death.  There was no significant 

difference between the groups in average survival time post ischaemic injury event.  Thus, 

the presence of dementia and executive dysfunction were the only features that separated 

the two groups.  There were no apparent differences in the burden of neurofibrillary 

pathology (Braak staging), amyloid β plaques (CERAD) or vascular pathology scores or the 

time from stroke to death between PSND and PSD groups (Table 1).   PSD and VaD subjects 

exhibited minimal neurofibrillary pathology compared AD and mixed dementia subjects 

(Figure 2).   

To account for the presence of any intracellular pathology in the cortical sections 

that could influence neuronal changes in the various dementias, we also quantified the 

density of hyperphosphorylated tau pathology evident by AT-8 immunoreactivity.  There 

was negligible AT8 immunostaining which revealed no differences in hyperphosphorylated 

tau burden between controls, PSND, PSD, and VaD (p=1.00).   However, as expected both 

the mixed dementia and AD groups had 4-5 fold greater tau burden compared to controls, 

PSND, PSD or VaD subjects (0.001) (Table 1).   AT-8 immunostaining in the frontal cortex 

signifying local NFT pathology was correlated with the Braak scores for total brain tau 

burden (r=0.769, p=0.001).  AT-8 staining also correlated with CERAD scores (r=0.706, 

p=0.001), MMSE (r=-0.543, p=0.005), and CAMCOG scores (r=-0.471, p=0.019) (Table 1). 

 More than 70% of the PSD cases met pathological criteria for a final diagnosis of 

VaD, the remainder exhibited mixed AD and VaD.   The mean scores of vascular pathology in 

terms of small infarcts, microinfarcts, arteriolosclerosis, perivascular spacing and cerebral 

amyloid angiopathy (Deramecourt et al., 2012) was similar in PSND, PSD and VaD cases 

(Table 1).   None of the cases had visible large infarcts in grey or white matter that could 

confound the neuronal assessments (below) but exhibited variable demyelination and 

axonal changes. There were no clear associations between lesion location and delayed PSD 

(p = 0.743).   

 

Frontal lobe neuronal densities 
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We analysed neuronal densities and volumes of pyramidal cells in neocortical layers III and 

V in the dlPFC, ACC and OFC regions.   In ageing controls, mean neuronal densities in layer III 

were estimated to be (per mm3) 35,110 in the dlPFC, 49,372 in the ACC and 33,321 in the 

OFC  in the three neocortical regions.   Whereas densities in layer V were found to be (per 

mm3) 39,436 in the dlPFC, 41,057 in the ACC and 30,960 in the OFC.   There were no striking 

differences in densities between cortical layers III and V in any of the groups although 

pyramidal neurone densities in the ACC and OFC tended to lower in numbers in layer V.   We 

found no significant changes related to dementia status in pyramidal neurone densities in 

the dlPFC or ACC.   In fact, there was a consistent lack of difference in neuronal densities 

between PSD and PSND and ageing controls in both cortical layers and in all of the 

neocortical regions including the OFC (Table 3).   However, neuronal densities in both layers 

III and V of the OFC tended to be decreased in VaD, mixed dementia and AD groups 

compared to ageing controls but only found to be significant when compared to the mixed 

dementia group (p=0.001 for both cortical layers).   Neuronal densities in layers III and V 

were also significantly lower in mixed dementia compared to PSD (p=0.049 and p=0.028) 

(Table 3).  The primary analysis also gave no evidence to indicate that the time period of 

post-mortem delay (PMD) or length of fixation (up to 40 weeks) influenced neuronal 

densities or volumes between the various dementia groups or controls (p>0.05).    

 

Frontal lobe neuronal volumes 

Unlike neuronal densities, there were distinct differences in neuronal size between the 

three cortical regions.  In ageing controls, mean neuronal volumes in layer III were found to 

be (in μl3) 1129 in the dlPFC, 1087 in the ACC and 732 in the OFC III in the three neocortical 

regions.   Whereas those in layer V were found to be (in μl3) 993 in the dlPFC, 959 in ACC 

and 729 in OFC.  Neuronal volumes in the ACC were greater than both the dlPFC and the 

OFC (p>0.05) (Figure 3) with the following order of size: ACC >dlPFC >OFC.   The mean size of 

neurones in both layers III and V of the OFC throughout the different groups was found to 

be on average 50% smaller compared to those in the dlPFC (p=0.001) (cf. Figure 3).  This was 

true for pyramidal neurones within both layers III (p=0.010) and layer V (p=0.027) of the 

OFC.  This apparent unique observation was proposed by Constantine von Economo (von 
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Economo, 2009) but precise size measurements were not reported.   Our additional two-

dimensional analyses showed that neurones in the OFC were significantly longer in relation 

to their width in both layers III (p=0.012) and V (p=0.002) compared to those found in the 

dlPFC.   This analysis also confirmed the neuronal volume differences between the OFC and 

the dlPFC regions.  Pyramidal neurones within the dlPFC were again found to be significantly 

larger than those in the OFC in layers III (p=0.010) and layer V (p=0.027).  

In contrast to the neuronal densities, pyramidal neuronal volumes were found to be 

markedly affected by dementia.  They were reduced in the dementia groups in the dlPFC 

compared to controls and PSND cases (p=<0.05) in both layers III and V (Figure 3).   The PSD 

(p=0.027), VaD (p=0.012), mixed dementia (p=0.03), and AD (p=0.035) groups had reduced 

neuronal volumes in the dlPFC compared to controls and PSND in layer III.  There were no 

differences in neuronal volumes in the PSND compared to controls (p=0.843).   Compared to 

PSND, pyramidal neuronal volumes were reduced in the PSD (p=0.01), VaD (p=0.001), mixed 

dementia (p=0.004), and AD (p=0.005) subjects (Figure 3).  Similarly, there were differences 

between groups within layer V of the dlPFC (p=0.05).  Pyramidal neuronal volumes were 

reduced in PSD (p=0.007), VaD (p=0.002), mixed dementia (p=0.008), and AD (p=0.015) 

subjects compared to controls.  Neuronal volumes in the dlPFC were also reduced in VaD 

subjects compared to PSND (p=0.034) subjects, who exhibited similar burden of vascular 

pathology (Figure 3).  Different from the dlPFC, there were no measureable effects of 

dementia or disease on neuronal volumes in either the ACC or OFC.  

 

Neuronal volumes and cognitive function 

To relate neuronal changes to cognitive function, we examined relationships between 

neuronal volumes in the dlPFC and neuropsychometric measures.  We found that neuronal 

volumes in layer III were correlated with the total CAMCOG scores (r=0.495, p=0.027), 

MMSE (r=0.367p=0.021) and sub-scores for orientation (r=0.509, p=0.018), as one of 

components of executive function.  Neuronal volumes in layer V were correlated with 

clinical dementia ratings (r=-0.-756, p=0.003) and memory scores (r=0.486, p=0.026). 
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Neocortical atrophy and interlaminar neuronal volumes comparisons 

We considered whether global cerebral atrophy or diffuse neocortical ribbon thinning was a 

factor that could explain the reduced neuronal volumes in PSD compared to PSND cases.   

First, concentrating solely on alterations in cortical thickness between the disease groups, or 

between disease groups and age-matched controls, we found there were no significant 

differences in cortical thickness variation between the groups in the dlPFC (Table 4).   We 

also found no relationships between cortical thickness and length of tissue fixation (P>0.05) 

which could cause tissue shrinkage.  

In further analysis, we found no significant differences between any marker of 

atrophy in any groups (p=0.193, ANOVA).  However, brain weight to volume ratio was 

significantly lower in PSD compared to PSND subjects (p=0.022, independent t-test).  

Similarly, when all three factors were combined into the atrophy formula, ANOVA revealed 

no significances between the groups (p=0.193).  The total Z score for the PSD group was 

calculated to be -0.160 whereas that for PSND was 0.216.  There was no evidence that 

general atrophy differed between the two groups (p>0.05). 

In an attempt to disclose differential degenerative processes within cortical cell 

layers across diseases, we also made interlaminar comparisons between cell volumes in 

layers III and V (Table 4).   We found that while there was an overall correlation of neuronal 

volumes in the dlPFC, the interlaminar correlations for neuronal volumes were not 

significant in cases with and type of vascular pathology e.g.  PSD, VaD, mixed dementia and 

PSND groups although significant relationships were noted in AD (p=0.026) and ageing 

controls (p=0.012).   Layer III and V neurones in PSD tended to be smaller in actual volumes 

compared to those in VaD, and mixed dementia and PSND groups suggesting individual 

neuronal atrophy in different disease sates may not occur similarly across cortical layers.   

There were no other striking regional differences in neuronal volumes across disease types 

between layers III and IV (data not shown).  

 

Comparison of neurofilament markers in PSND, PSD and VaD in dlPFC 

Commented [n10]: ?? 
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To further differentiate PSD and PSND subjects and compare with VaD pathology, we 

assessed the widely recognised neurofilament protein markers SMI31 and SMI32 in the grey 

and white matter, respectively.   Compared to PSND subjects , SMI31 immunoreactivity in 

layer III was increased by 2.6-fold in PSD and by 2.3-fold in VaD cases compared to PSND 

subjects (Figure 4).  The PSD (p=0.004) and VaD (p=0.031) subjects showed increased SMI31 

neuronal immunoreactivites in layer III compatible with the decreased neuronal volumes (cf. 

Figure 3).   However, similar degrees of increases in SMI31 were not apparent in layer V 

neurones either in PSD and VaD compared to PSND (p>0.05).  Increased immunoreactivity 

of SMI32 was also correlated with decreased neuronal volumes in PSD and VaD cases (r = 

0.619, p= 0.008) (Supplement Figure S1).       

Consistent with the widespread changes in the axonal architecture, we found that 

SMI32 immunoreactive profiles of axons in the white matter were not significantly altered in 

PSD or VaD compared to PSND subjects (p>0.05).   In parallel analyses, we found that only 

cases with mixed pathology had increased SMI32 immunoreactivity (data not shown).   This 

indicated that although neuronal abnormalities (SMI31) were apparent in the grey matter, 

there were even more widespread and variable axonal anomalies apparent in the PSND, 

PSD and VaD cases in the white matter.    

 

Microvascular pathology in the frontal lobe in PSD and VaD 

Based on our previous methods (Ihara et al., 2010), we analysed various markers in the 

underlying white matter to identify substrates which explain the neocortical differences in 

the dlPFC in PSD and PSND subjects.  We found that frontal WM had nearly similar frontal 

myelin loss and there were no significant differences in the myelin index between PSD and 

PSND cases (p=0.514), or the combined score from all post-stroke subjects against ageing 

controls (p=0.103).   However, the analysis showed VaD subjects to have significantly higher 

myelin loss when compared controls (p=0.034).  Overall, the demented subjects showed 

comparable levels of myelin loss with no clear differences found between PSD, VaD, mixed, 

or AD groups (p>0.05). 

Commented [n11]:  
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We also determined degrees of arteriolosclerosis within the WM.  This analysis did 

not reveal any differences between any of the groups although the sclerotic index values 

were greater in the white matter (0.44) compared to the cortical grey matter (0.40) in the 

dlPFC (p <0.05).  Similarly, we found no differences across the dementias or controls in 

either the grey or white matter (data not shown).   Exploring the hypothesis that the 

microvasculature of the dlPFC would increase in density with increased neuronal atrophy in 

demented subjects, we also assessed the length density (Lv) of microvessels labelled with 

GLUT1 in the PSD, VaD, mixed dementia and VaD subjects compared to PSND and ageing 

controls.   We found no significant differences between any of the groups in the dlPFC 

(Kruskal-Wallis p=0.627).    

 

DISCUSSION 

We provide novel evidence for reduced pyramidal neurone volumes in layers III and V in the 

dlPFC of subjects with PSD compared to PSND subjects and ageing controls.  This was a 

regionally selective change in that the ACC and OFC were not affected.  The PSD and PSND 

subjects had comparable burdens of vascular pathology but in the general absence of 

Alzheimer type neurofibrillary pathology.  We further found that VaD subjects exhibited 

similar ~25% reduction in pyramidal neuronal volumes in the dlPFC.  We also noted that AT8 

immunostaining within the frontal cortex revealed negligible or no tau burden in the PSD (or 

VaD) and PSND subjects agreeing with the lack of differences in Braak scores between the 

vascular disease groups.   These observations were also corroborated by the finding of 

increased SMI31 immunoreactivities indicating selective neuronal abnormalities in dlPFC 

layer III of PSD and VaD subjects.   While we noted similar degree of SMI31 in layer V 

neurones in PSD and VaD compared to PSND (p>0.05) the differences in the findings 

between layers III and V suggests different neurodegenerative processes occur within 

cortical cell layers as a result of the vascular changes.    

Our observations support a vascular basis for the highly specific pyramidal neurone 

atrophy in those subjects who develop cognitive impairment or dementia after stroke or 

acquire VaD.  This also indicates that Alzheimer type of pathology does not play a role in the 

neuronal atrophy in PSD and VaD.  However, neuronal volumes in layers III and V in the 
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same brain region of the frontal lobe were also reduced in subjects with mixed dementia 

and AD.   While neurofibrillary pathology (AT8 and amyloid- β immunoreactivites) could 

have influenced neuronal size (Giannakopoulos et al., 1997).   It is plausible that the 

observed atrophic changes in the dlPFC result from different pathogenetic mechanisms not 

withstanding changes in intracellular regulatory proteins within different organelles or 

nuclei  (Love et al., 1999; Salehi et al., 1996).   It has been suggested that the brain has a 

limited repertoire to insults, with pathologies from unrelated aetiologies display similar end 

stage changes (Wardlaw et al., 2003).   However, this does not negate the notion that 

vascular disease per se or small vessel disease pathology could also play a substantial role in 

influencing the frontal lobe in subjects who develop AD and mixed dementia (Kalaria, 2000; 

Kalaria and Ihara, 2013).    

The lack of a relationship between cortical thickness and disease suggests diffuse 

atrophy or shrinkage of the cortical ribbon, within the dlPFC is not a pathological substrate 

for the development of dementia or that our results are produced by artefacts of post-

mortem tissue shrinkage.   Furthermore, using the atrophy formula we calculated total Z 

scores using three different indices for the PSD and PSND cases.   Overall, these findings 

were consistent with our observations on the selective pyramidal cell atrophy and lack of 

neuronal number loss in dlPFC of PSD (and VaD) subjects compared to PSND and ageing 

controls.  However, when brain weight to volume ratios were considered as a predictor of 

atrophy separately, PSD ratios were shown to be significantly lower compared to PSND 

subjects.  PSD subjects therefore appear to lose more brain mass than the PSND subjects.  

This suggests a more widespread pathology in which the other regions of the brain succumb 

to atrophy and possibly accounts for the temporal lobe (Firbank et al., 2007) and white 

matter (Burton et al., 2004). 

The overall correlations between volumes and densities of layer III and V neurones 

across the dementias and controls provided internal consistency of our assessment 

methods.  However, we found evidence to suggest that in the PSD and VaD cases 

particularly there were differential effects in cell volume changes between layers III and V.  

This is consistent with the observation of a selective atrophy and anatomical properties of 

the pyramidal neurones whereby those in layer III largely innervate neocortical domains 
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whereas those in layer V project to subcortical structures including the basal ganglia and 

thalamus (Molnar and Cheung, 2006).   

The changes in neuronal volumes were also related to post-stroke cognitive function.   

We found positive correlations between neuronal volumes in layer III of the dlPFC with total 

CAMCOG scores and orientation, and between neuronal volumes in layer V with total 

memory and CDR scores.   A reduced neuronal volume in the dlPFC may reflect smaller 

dendritic or axonal arbours with fewer connections between pyramidal neurones and 

aberrant neuronal networks within the fronto-subcortical circuits (Burton et al., 2003) 

resulting in a possible disconnection between the three major circuits and the observed 

cognitive function deficits (Freeman et al., 2008).  This is consistent with our previous 

findings linking hippocampal neuronal volumes and memory function (Gemmell et al., 

2012).   We did not find any changes in neurone densities differentiating the PSD and PSND 

subjects as determined using 3-D stereology in any of the three frontal lobe regions.  These 

observations are in agreement with previous studies (Khundakar et al., 2009; Rajkowska et 

al., 1999) suggesting that neuronal loss is not necessarily a prerequisite for executive 

dysfunction.   

In comparing neuronal volumes in ageing controls and PSND subjects first, we noted 

that pyramidal neurones within both layers III and V in the OFC were substantially smaller 

than those in the dlPFC and the ACC.  This was also true across the dementias.  These results 

were confirmed using both 2-D and 3-D analyses.  Upon measuring the length and width of 

individual neurones, it was evident that pyramidal neurones of the OFC were slender than 

those found in layers III and V of the dlPFC.  This finding suspected previously by von 

Economo (von Economo, 2009) may relate to the specialised functions of the OFC neurones 

(Viskontas et al., 2007).    

While our analysis included a substantial number of cases, it would require greater 

numbers to examine relationships between the observed neuronal changes and factors such 

as age, risk factors and more pathological markers.  Another limitation of the study was that 

it was not possible to accurately establish whether further strokes had occurred at follow-

up, therefore in this subgroup of subjects it was not possible to investigate relationships 

between lesion number and dlPFC neuronal changes.  A further limitation of this study was 
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that tissue from controls, VaD, mixed and AD subjects was collected from parallel 

prospective studies rather than part of the CogFAST study.  However, the robust results 

demonstrating differences between the PSND and PSD subjects within the same cohort and 

almost equal burden of vascular disease at baseline, were not attributable to genral cerebral 

atrophy, differences in tissue processing or other unforeseen factors.  Furthermore, all 

tissue was collected, treated and analyzed in a standardised manner to minimize differential 

tissue effects from processing and staining all cases, allowing accurate and valid 

comparisons to be made. 

Conclusions 

 We found a highly selective effect in the frontal lobe of elderly post-stroke subjects who 

develop delayed dementia and in VaD subjects that is explained in the absence of any 

discernable neurofibrillary pathology or proteinopathy.  We noted pyramidal neurone 

atrophy rather than loss of neuronal numbers within the dlPFC but not in the ACC and OFC 

suggests localised pathological changes are associated with distinct cognitive processes.   

We also found reduced pyramidal neuronal volumes in the OFC compared to the ACC and 

the dlPFC that is likely an anatomical trait of the OFC rather than related to any pathological 

process.  Our study showed that neuronal volume reduction or atrophy rather than 

neuronal number loss is apparent in PSD cases suggesting high potential for therapeutic 

strategies (Kirvell et al., 2010)  to maintain or recover neuronal function in these disease 

states.  Further substantial work is needed to explore the differential status of dendritic 

arborisation and synaptic density in the three frontal lobe regions.   
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Table 1:  Details of all the subject demographics and pathological features 

Variable Control PSND PSD VaD Mixed 

dementia 

AD 

Number of 

subjects (n=90) 

Total 25 

 

11  

 

13 

 

15 

 

13 

 

13 

 

Age, years 

(range) 

81.5  

(71-98) 

83.2  

(78-88) 

87.2  

(80-98) 

83.8  

(71-97) 

83.9  

(72-94) 

85.6  

(76-96) 

PMD, hr 

(range) 

22.9  

(8-48) 

44.8  

(24-96 ) 

40.4  

(10-96) 

51.2 

(24-84) 

34.6 

(11-63) 

40.9  

(6-72) 

Braak stage 

(range) 

1.5 (1-4) 2.6 (1-4) 2.6 (1-4) 1.9 (1-4) 4.9 (4-6)* 5.3 (4-6)* 

CERAD (range) NPD 1.7 (1-2) 1.3 (1-3) 0.9 (1-2) 2.7 (1-3)* 3 (3)* 

Vascular 

pathology 

score† (range) 

NPD 13.5  

(13-14) 

13.3  

(9-17) 

14.3  

(14-15) 

11.0  

(6-14) 

5.0*  

(4-5) 

AT-8 Score 0-6 

(range) 

1.3  

(1-3) 

1  

(1) 

1.3  

(1-3) 

1.3  

(1-3) 

4.8  

(2-6) 

4.4  

(2-6) 

 

Numbers represent mean values with the range of values in parentheses.  The causes of 

death included bronchopneumonia, cardiac arrest and carcinoma with no particular 

distribution in any group.  The time period (weeks) of tissue fixation was in range 8-40 

weeks for all the cases.† Vascular pathology scores were derived as described previously 

(Deramecourt et al., 2012).  Significance: *indicates significant (p<0.05) differences found 

between group means.  Abbreviations: PSND = post-stroke non-demented; PSD = post-

stroke dementia; VaD = vascular dementia; mixed = mixed VaD and Alzheimer’s disease; AD 

= Alzheimer’s disease; PMD = post-mortem delay, CERAD = Consortium to Establish a 

Registry for Alzheimer’s disease score; n, number; NPD, no pathological diagnosis. 
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Table 2: Clinical features in post-stroke and VaD subjects 

Variable  PSND PSD VaD 

Time from baseline- death (months)  Mean (±2SE)  63.5 (22) 64.4 (14) Dementia  

Total CAMCOG score (/100)  Mean (range) 88.0 (83-98) 61.5 (24-80) 58 (36-80) 

Memory sub-score (/27)  Mean (2SEM) 21.4 (2.8) 15 ( 4.3)  <15 

Executive function sub-score (/28)  Mean (SEM) 16.6 (1.2) 11.1 (1.9) <11 

Clinical Dementia Rating (CDR) Mean (2SEM) 0.1 ±0.4 1.28 (0.25) 3.0 ±0 

Hemisphere with visible change or not on CT 

None, right, left, 

both 
4, 3, 1, 3 2, 2, 6, 3 

na 

 

Abbreviations: PSND = non-demented post-stroke subjects, PSD = delayed post-stroke 

dementia; VaD = vascular dementia, na, not available 
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Table 3: Neuronal densities in layers III and V of dlPFC, ACC and OFC in PSD and PSND 
subjects 
Control and disease 

group 

Layer III 

(dlPFC) 

Layer V 

(dlPFC) 

Layer III 

(ACC) 

Layer V 

(ACC) 

Layer III 

(OFC) 

Layer V 

(OFC) 

Ageing Controls 

  

35110 +202   39436 +220  49372 +397 41057 +375 33321 +214 30960 +214 

PSND 31584 +216 36821 +260 44727 +322  42639 +489 39605 +408 40346 +242 

PSD 39166 +340 41620 +420 40692 +287 38097 +378 36243 +491 41402 +679 

VaD 38148 +291 37902 +307 43177 +304 38840 +344 27027 +217 26760 +286* 

Mixed 37205 +433 44370 +479 43720 +435 44582 +433 22737 +139*   23645 +325* 

AD 35480 +202 38154 +171 39292 +297 33252 +397 26669 +317 27050 +294* 

Total 36132 +118 39739 +132 43497 +141 39745 +161 31151 +140 31627 +160 
 
Values represent mean + standard error of the mean (SEM) of counts of neurones in layers 

III and V of the three frontal lobe regions.  Total numbers are given to show consistency of 

numbers within layers.   Significance: *indicates significant (p<0.05) differences found 

against ageing controls.  There were no differences in the means between controls and 

PSND groups (>0.05).   Abbreviations: PSND = post-stroke non-demented; PSD = post-stroke 

dementia; VaD = vascular dementia; mixed = mixed VaD and Alzheimer’s disease; AD = 

Alzheimer’s disease. 
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Table 4:  Neocortical thickness and Interlaminar neuronal volumes correlations in the 

dlPFC 

Thickness in 

mm 

Ageing 

Controls 

PSND PSD VaD Mixed AD 

Mean 

(+SEM) 

2.96  +0.13 2.75  +0.11 2.89 +0.17 2.78 +0.10 2.98 +0.12 2.86 +0.13 

Volumes  

Layer III vs V 

R (p value) 

0.696 

(0.012) 

0.468 

NS 

0.181 

NS 

0.610 

NS 

0.378 

NS 

0.695 

(0.026) 

 

For cortical thickness, numbers show mean +SEM for n= 10-11 cases.  Cortical depth was 

determined within the sulci as described in the Methods.  There were no significant 

differences (P>0.05) in cortical thickness variation between any of the groups.  For 

interlaminar comparisons, numbers show r values, correlation coefficients from Pearson’s 

analysis and p values in parentheses.   Interlaminar neuronal volumes were not correlated in 

PSND, PSD, VaD and Mixed cases (in BOLD) suggesting differential cellular changes between 

layers III and V.  Interlaminar correlations in the ACC and OFC were consistently significant 

(p<0.05, data not shown).   Abbreviations: NS, not significant (p >0.05), PSND = post-stroke 

non-demented; PSD = post-stroke dementia; VaD = vascular dementia; mixed = mixed VaD 

and Alzheimer’s disease; AD = Alzheimer’s disease.. 

 

  



                                                                                                                                      Foster V et al 2013 
 

31 
 

Figure legends 

Figure 1.  Frontal lobe regions and Image of the nucleator principle for assessing neuronal 

volumes.  A, shows the regions of the dlPFC, ACC and OFC where neurones were sampled 

per coronal atlas of the human brain (Perry and Oakley, 1993).  B, an example of a 

pyramidal neurone in which six randomly oriented rays originating from the nucleolus were 

marked where they crossed the border of the neuronal soma and then the soma volume 

was calculated using the nucleator.  P = pyramidal cell, N = non-pyramidal cell, G = glial cell.  

Red and green lines delineate the disector frame.  Bar 20 µm 

Figure 2.  Neocortical neurofibrillary pathology in the dlPFC in post-stroke, vascular and 

other dementias.  The first column shows a H&E stained section from a control subject.  

Cortical columns show AT8 immunoreactivity as hyperphosphorylated tau in tangles in 

controls, PSND, PSD, VaD, Mixed and AD subjects.  Bar = 320 µm 

Figure 3.  Neuronal volumes in the prefrontal cortex of PSD and PSND subjects.   Histograms 

show pyramidal cell volumes (in μl3) in layer III (A) and layer V (B) in the dlPFC (filled 

columns), ACC (hatched) and OFC (stippled) in ageing controls, PSND, PSD, VaD, Mixed and 

AD subjects.   Asterisks indicate significantly different to ageing controls (p<0.01) or PSND 

(p<0.05).   There were no differences in the means between controls and PSND (>0.05).  

Abbreviations: Ctrl = Ageing controls, PSND = non-demented post-stroke subjects, PSD = 

delayed post-stroke dementia, VaD = vascular dementia, ‘mixed’ mixed Alzheimer’s and 

vascular dementia, AD= Alzheimer’s disease.   

Figure 4.  Intralaminar cortical and white matter neurofilament protein localization in dlPFC 

of PSD and PSND subjects.   Panels A-D show SMI31 immunoreactivity in layer III in PSND, 

PSD and VaD subjects.  Panels E-H show SMI32 immunoreactivity in the white matter in 

PSND, PSD and VaD subjects.  Histograms (D and H) show mean +SEM immunoreactivities 

(counts) of SMI31 and SMI32 in the three groups.  Significance: *indicates significant 

(p<0.05) differences found against PSND.  Bar = A-C =50 μm (SMI31), E-G, 200 μm (SMI32). 

Supplement Figure S1.  Relationship between dlPFC layer III SMI31 reactivity in neurones 

and pyramidal cell volumes in PSD (red symbols) and VaD (black) subjects.  There was a 

strong correlation between SMI31 counts and neuronal volumes (r = 0.619, p= 0.008).   


