174 research outputs found
Construction and test of a moving boundary model for negative streamer discharges
Starting from the minimal model for the electrically interacting particle
densities in negative streamer discharges, we derive a moving boundary
approximation for the ionization fronts. The boundary condition on the moving
front is found to be of 'kinetic undercooling' type. The boundary
approximation, whose first results have been published in [Meulenbroek et al.,
PRL 95, 195004 (2005)], is then tested against 2-dimensional simulations of the
density model. The results suggest that our moving boundary approximation
adequately represents the essential dynamics of negative streamer fronts.Comment: 10 pages, 7 figures; submitted to Phys. Rev.
Moving boundary approximation for curved streamer ionization fronts: Solvability analysis
The minimal density model for negative streamer ionization fronts is
investigated. An earlier moving boundary approximation for this model consisted
of a "kinetic undercooling" type boundary condition in a Laplacian growth
problem of Hele-Shaw type. Here we derive a curvature correction to the moving
boundary approximation that resembles surface tension. The calculation is based
on solvability analysis with unconventional features, namely, there are three
relevant zero modes of the adjoint operator, one of them diverging;
furthermore, the inner/outer matching ahead of the front has to be performed on
a line rather than on an extended region; and the whole calculation can be
performed analytically. The analysis reveals a relation between the fields
ahead and behind a slowly evolving curved front, the curvature and the
generated conductivity. This relation forces us to give up the ideal
conductivity approximation, and we suggest to replace it by a constant
conductivity approximation. This implies that the electric potential in the
streamer interior is no longer constant but solves a Laplace equation; this
leads to a Muskat-type problem.Comment: 22 pages, 6 figure
Moving boundary approximation for curved streamer ionization fronts: Numerical tests
Recently a moving boundary approximation for the minimal model for negative
streamer ionization fronts was extended with effects due to front curvature;
this was done through a systematic solvability analysis. A central prediction
of this analysis is the existence of a nonvanishing electric field in the
streamer interior, whose value is proportional to the front curvature. In this
paper we compare this result and other predictions of the solvability analysis
with numerical simulations of the minimal model.Comment: 8 pages, 8 figure
Very Large Array Observations of Ammonia in Infrared-Dark Clouds II: Internal Kinematics
Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich
clusters and thus contain the earliest phases of high-mass star formation. We
use the Green Bank Telescope (GBT) and Very Large Array (VLA) maps of ammonia
(NH3) in six IRDCs to measure their column density and temperature structure
(Paper 1), and here, we investigate the kinematic structure and energy content.
We find that IRDCs overall display organized velocity fields, with only
localized disruptions due to embedded star formation. The local effects seen in
NH3 emission are not high velocity outflows but rather moderate (few km/s)
increases in the line width that exhibit maxima near or coincident with the
mid-infrared emission tracing protostars. These line width enhancements could
be the result of infall or (hidden in NH3 emission) outflow. Not only is the
kinetic energy content insufficient to support the IRDCs against collapse, but
also the spatial energy distribution is inconsistent with a scenario of
turbulent cloud support. We conclude that the velocity signatures of the IRDCs
in our sample are due to active collapse and fragmentation, in some cases
augmented by local feedback from stars.Comment: 15 pages, 12 figures, accepted for publication in Ap
Gravitational Quenching in Massive Galaxies and Clusters by Clumpy Accretion
We consider a simple gravitational-heating mechanism for the long-term
quenching of cooling flows and star formation in massive dark-matter haloes
hosting ellipticals and clusters. The virial shock heating in haloes >10^12 Mo
triggers quenching in 10^12-13 Mo haloes (Birnboim, Dekel & Neistein 2007). We
show that the long-term quenching in haloes >Mmin~7x10^12 Mo could be due to
the gravitational energy of cosmological accretion delivered to the inner-halo
hot gas by cold flows via ram-pressure drag and local shocks. Mmin is obtained
by comparing the gravitational power of infall into the potential well with the
overall radiative cooling rate. The heating wins if the gas inner density cusp
is not steeper than r^-0.5 and if the masses in the cold and hot phases are
comparable. The effect is stronger at higher redshifts, making the maintenance
easier also at later times. Clumps >10^5 Mo penetrate to the inner halo with
sufficient kinetic energy before they disintegrate, but they have to be <10^8
Mo for the drag to do enough work in a Hubble time. Pressure confined ~10^4K
clumps are stable against their own gravity and remain gaseous once below the
Bonnor-Ebert mass ~10^8 Mo. They are also immune to tidal disruption. Clumps in
the desired mass range could emerge by thermal instability in the outer halo if
the conductivity is not too high. Alternatively, such clumps may be embedded in
dark-matter subhaloes if the ionizing flux is ineffective, but they separate
from their subhaloes by ram pressure before entering the inner halo. Heating by
dynamical friction becomes dominant for massive satellites, which can
contribute up to one third of the total gravitational heating. We conclude that
gravitational heating by cosmological accretion is a viable alternative to AGN
feedback as a long-term quenching mechanism.Comment: 24 pages, 20 figures, some improvements, MNRAS accepted versio
Gravitational Quenching in Massive Galaxies and Clusters by Clumpy Accretion
We consider a simple gravitational-heating mechanism for the long-term
quenching of cooling flows and star formation in massive dark-matter haloes
hosting ellipticals and clusters. The virial shock heating in haloes >10^12 Mo
triggers quenching in 10^12-13 Mo haloes (Birnboim, Dekel & Neistein 2007). We
show that the long-term quenching in haloes >Mmin~7x10^12 Mo could be due to
the gravitational energy of cosmological accretion delivered to the inner-halo
hot gas by cold flows via ram-pressure drag and local shocks. Mmin is obtained
by comparing the gravitational power of infall into the potential well with the
overall radiative cooling rate. The heating wins if the gas inner density cusp
is not steeper than r^-0.5 and if the masses in the cold and hot phases are
comparable. The effect is stronger at higher redshifts, making the maintenance
easier also at later times. Clumps >10^5 Mo penetrate to the inner halo with
sufficient kinetic energy before they disintegrate, but they have to be <10^8
Mo for the drag to do enough work in a Hubble time. Pressure confined ~10^4K
clumps are stable against their own gravity and remain gaseous once below the
Bonnor-Ebert mass ~10^8 Mo. They are also immune to tidal disruption. Clumps in
the desired mass range could emerge by thermal instability in the outer halo if
the conductivity is not too high. Alternatively, such clumps may be embedded in
dark-matter subhaloes if the ionizing flux is ineffective, but they separate
from their subhaloes by ram pressure before entering the inner halo. Heating by
dynamical friction becomes dominant for massive satellites, which can
contribute up to one third of the total gravitational heating. We conclude that
gravitational heating by cosmological accretion is a viable alternative to AGN
feedback as a long-term quenching mechanism.Comment: 24 pages, 20 figures, some improvements, MNRAS accepted versio
Epigenetic dynamics of monocyte-to-macrophage differentiation
Background Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium. Results Numerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis and innate immune response. Conclusions In summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in monocytes and rapidly de-repressed after the onset of macrophage differentiation
Divergent GW182 functional domains in the regulation of translational silencing
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing
3′UTR-Mediated Gene Silencing of the Mixed Lineage Leukemia (MLL) Gene
Translocations involving the Mixed Lineage Leukemia (MLL) gene generate in-frame fusions of MLL with more than 50 different partner genes (PGs). Common to all MLL translocations is the exchange not only of coding regions, but also of MLL and PG 3′-untranslated regions (3′UTRs). As a result, the MLL-PG fusion is normally highly expressed and considered the main driver of leukemia development, whereas the function of the PG-MLL fusions in leukemic disease is unclear. As 3′UTRs have been recognized as determinant regions for regulation of gene expression, we hypothesized that loss of the MLL 3′UTR could have a role in generating high MLL-PG levels and leukemia development. Here, we first tested the MLL-PG and PG-MLL mRNA levels in different leukemic cells and tumours and uncovered differential expression that indicates strong repression by the MLL-3′UTR. Reporter assays confirmed that the 3′UTR of MLL, but not of its main PGs, harbours a region that imposes a strong gene silencing effect. Gene suppression by the MLL 3′UTR was largely microRNA independent and did not affect mRNA stability, but inhibited transcription. This effect can at least partially be attributed to a tighter interaction of the MLL 3′UTR with RNA polymerase II than PG 3′UTRs, affecting its phosphorylation state. Altogether, our findings indicate that MLL translocations relieve oncogenic MLL-PG fusions from the repressive MLL 3′UTR, contributing to higher activity of these genes and leukaemia development
- …