198 research outputs found

    Comprehensive functional annotation of 77 prostate cancer risk loci.

    Get PDF
    Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process

    Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model

    Full text link
    Background: The multifactorial risk prediction model BOADI-CEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component -the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA.Methods: The mean, SD, and proportion of the overall polygenic component explained by the PRS (a2) need to be estimated. a was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component.Results: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and imple-mentation studies. The logistic regression approach underestimates a, as compared with the RL estimates. The RL a estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean.Conclusions: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model.Impact : The methods described facilitate comprehensive breast cancer risk assessment

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    Genome-wide association study of endometrial cancer in E2C2

    Get PDF
    Endometrial cancer (EC), a neoplasm of the uterine epithelial lining, is the most common gynecological malignancy in developed countries and the fourth most common cancer among US women. Women with a family history of EC have an increased risk for the disease, suggesting that inherited genetic factors play a role. We conducted a two-stage genome-wide association study of Type I EC. Stage 1 included 5,472 women (2,695 cases and 2,777 controls) of European ancestry from seven studies. We selected independent single-nucleotide polymorphisms (SNPs) that displayed the most significant associations with EC in Stage 1 for replication among 17,948 women (4,382 cases and 13,566 controls) in a multiethnic population (African America, Asian, Latina, Hawaiian and European ancestry), from nine studies. Although no novel variants reached genome-wide significance, we replicated previously identified associations with genetic markers near the HNF1B locus. Our findings suggest that larger studies with specific tumor classification are necessary to identify novel genetic polymorphisms associated with EC susceptibility. Electronic supplementary material The online version of this article (doi:10.1007/s00439-013-1369-1) contains supplementary material, which is available to authorized users

    Prospective screening study of 0.5 Tesla dedicated magnetic resonance imaging for the detection of breast cancer in young, high-risk women

    Get PDF
    BACKGROUND: Evidence-based screening guidelines are needed for women under 40 with a family history of breast cancer, a BRCA1 or BRCA2 mutation, or other risk factors. An accurate assessment of breast cancer risk is required to balance the benefits and risks of surveillance, yet published studies have used narrow risk assessment schemata for enrollment. Breast density limits the sensitivity of film-screen mammography but is not thought to pose a limitation to MRI, however the utility of MRI surveillance has not been specifically examined before in women with dense breasts. Also, all MRI surveillance studies yet reported have used high strength magnets that may not be practical for dedicated imaging in many breast centers. Medium strength 0.5 Tesla MRI may provide an alternative economic option for surveillance. METHODS: We conducted a prospective, nonrandomized pilot study of 30 women age 25–49 years with dense breasts evaluating the addition of 0.5 Tesla MRI to conventional screening. All participants had a high quantitative breast cancer risk, defined as ≥ 3.5% over the next 5 years per the Gail or BRCAPRO models, and/or a known BRCA1 or BRCA2 germline mutation. RESULTS: The average age at enrollment was 41.4 years and the average 5-year risk was 4.8%. Twenty-two subjects had BIRADS category 1 or 2 breast MRIs (negative or probably benign), whereas no category 4 or 5 MRIs (possibly or probably malignant) were observed. Eight subjects had BIRADS 3 results, identifying lesions that were "probably benign", yet prompting further evaluation. One of these subjects was diagnosed with a stage T1aN0M0 invasive ductal carcinoma, and later determined to be a BRCA1 mutation carrier. CONCLUSION: Using medium-strength MRI we were able to detect 1 early breast tumor that was mammographically undetectable among 30 young high-risk women with dense breasts. These results support the concept that breast MRI can enhance surveillance for young high-risk women with dense breasts, and further suggest that a medium-strength instrument is sufficient for this application. For the first time, we demonstrate the use of quantitative breast cancer risk assessment via a combination of the Gail and BRCAPRO models for enrollment in a screening trial

    Deregulation of DUX4 and ERG in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function

    Genetic variation in insulin-like growth factor signaling genes and breast cancer risk among BRCA1 and BRCA2 carriers

    Get PDF
    Abstract Introduction Women who carry mutations in BRCA1 and BRCA2 have a substantially increased risk of developing breast cancer as compared with the general population. However, risk estimates range from 20 to 80%, suggesting the presence of genetic and/or environmental risk modifiers. Based on extensive in vivo and in vitro studies, one important pathway for breast cancer pathogenesis may be the insulin-like growth factor (IGF) signaling pathway, which regulates both cellular proliferation and apoptosis. BRCA1 has been shown to directly interact with IGF signaling such that variants in this pathway may modify risk of cancer in women carrying BRCA mutations. In this study, we investigate the association of variants in genes involved in IGF signaling and risk of breast cancer in women who carry deleterious BRCA1 and BRCA2 mutations. Methods A cohort of 1,665 adult, female mutation carriers, including 1,122 BRCA1 carriers (433 cases) and 543 BRCA2 carriers (238 cases) were genotyped for SNPs in IGF1, IGF1 receptor (IGF1R), IGF1 binding protein (IGFBP1, IGFBP2, IGFBP5), and IGF receptor substrate 1 (IRS1). Cox proportional hazards regression was used to model time from birth to diagnosis of breast cancer for BRCA1 and BRCA2 carriers separately. For linkage disequilibrium (LD) blocks with multiple SNPs, an additive genetic model was assumed; and for single SNP analyses, no additivity assumptions were made. Results Among BRCA1 carriers, significant associations were found between risk of breast cancer and LD blocks in IGF1R (global P = 0.011 for LD block 2 and global P = 0.012 for LD block 11). Among BRCA2 carriers, an LD block in IGFBP2 (global P = 0.0145) was found to be associated with the time to breast cancer diagnosis. No significant LD block associations were found for the other investigated genes among BRCA1 and BRCA2 carriers. Conclusions This is the first study to investigate the role of genetic variation in IGF signaling and breast cancer risk in women carrying deleterious mutations in BRCA1 and BRCA2. We identified significant associations in variants in IGF1R and IRS1 in BRCA1 carriers and in IGFBP2 in BRCA2 carriers. Although there is known to be interaction of BRCA1 and IGF signaling, further replication and identification of causal mechanisms are needed to better understand these associations

    ARTICLEAssociation of the CHEK2 c.1100delC variant, radiotherapy, and systemic treatment with contralateral breast cancer risk and breast cancer-specific survival

    Get PDF
    Aim To assessed the associations of CHEK2 c.1100delC, radiotherapy, and systemic treatment with CBC risk and BCSS. Methods Analyses were based on 82,701 women diagnosed with a first primary invasive BC including 963 CHEK2 c.1100delC carriers; median follow-up was 9.1 years. Differential associations with treatment by CHEK2 c.1100delC status were tested by including interaction terms in a multivariable Cox regression model. A multi-state model was used for further insight into the relation between CHEK2 c.1100delC status, treatment, CBC risk and death. Results There was no evidence for differential associations of therapy with CBC risk by CHEK2 c.1100delC status. The strongest association with reduced CBC risk was observed for the combination of chemotherapy and endocrine therapy [HR (95% CI): 0.66 (0.55–0.78)]. No association was observed with radiotherapy. Results from the multi-state model showed shorter BCSS for CHEK2 c.1100delC carriers versus non-carriers also after accounting for CBC occurrence [HR (95% CI): 1.30 (1.09–1.56)]. Conclusion Systemic therapy was associated with reduced CBC risk irrespective of CHEK2 c.1100delC status. Moreover, CHEK2 c.1100delC carriers had shorter BCSS, which appears not to be fully explained by their CBC risk

    Association of the CHEK2 c.1100delC variant, radiotherapy, and systemic treatment with contralateral breast cancer risk and breast cancer-specific survival

    Get PDF
    Background: Breast cancer (BC) patients with a germline CHEK2 c.1100delC variant have an increased risk of contralateral BC (CBC) and worse BC-specific survival (BCSS) compared to non-carriers.Aim: To assessed the associations of CHEK2 c.1100delC, radiotherapy, and systemic treatment with CBC risk and BCSS.Methods: Analyses were based on 82,701 women diagnosed with a first primary invasive BC including 963 CHEK2 c.1100delC carriers; median follow-up was 9.1 years. Differential associations with treatment by CHEK2 c.1100delC status were tested by including interaction terms in a multivariable Cox regression model. A multi-state model was used for further insight into the relation between CHEK2 c.1100delC status, treatment, CBC risk and death. Results: There was no evidence for differential associations of therapy with CBC risk by CHEK2 c.1100delC status. The strongest association with reduced CBC risk was observed for the combination of chemotherapy and endocrine therapy [HR (95% CI): 0.66 (0.55-0.78)]. No association was observed with radiotherapy.Results from the multi-state model showed shorter BCSS for CHEK2 c.1100delC carriers versus non-carriers also after accounting for CBC occurrence [HR (95% CI): 1.30 (1.09-1.56)].Conclusion: Systemic therapy was associated with reduced CBC risk irrespective of CHEK2 c.1100delC status. Moreover, CHEK2 c.1100delC carriers had shorter BCSS, which appears not to be fully explained by their CBC risk.Peer reviewe
    corecore