15 research outputs found
Volume 02
Introduction from Dean Dr. Charles Ross
Mike\u27s Nite: New Jazz for an Old Instrument by Joseph A. Mann
Investigation of the use of Cucumis Sativus for Remediation Of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project by Kathryn J. Greenly, Scott E. Jenkins, and Andrew E. Puckette
Development of GC-MS and Chemometric Methods for the Analysis of Accelerants in Arson Cases by Scott Jenkins
Building and Measuring Scalable Computing Systems by Daniel M. Honey and Jeffery P. Ravenhorst
Nomini Hall: A Case Study in the Use of Archival Resources as Guides for Excavation at An Archaeological Site by Jamie Elizabeth Mesrobian
Two Stories: In Ohio and How to Stay Out of the Brazilian Army by Thomas Scott
Forgerson des Hommes/Stealing the Steel in Zola\u27s Men by Jay Crowell
Paul Gauguin\u27s Escape into Primitivism by Sarah Spangenberg
Lee Krasner, Abstract Expressionist by Amy S. Eason
Artist Book “Paris” by Kenny Wolfe
Artist Book “Sequence of Every Day” by Liz Hale
Artist Book “Apple Tree” by Rachel Bouchard
Artist Book “Not so Pretty in Pink” by Will Semonco
Artist Book “Look into the Moon” by Carley York
Artist Books “Extra” and “Green” by Ryan Higgenbothom
Artist Book “Re-growing Appalachia” by Adrienne Heinbaugh
Artist Books “Cheeziest”, “Uh-oh” and “The Girl with the Glasses” by Melissa Dorton
“Self-Reflection” by Madeline Hunter
Artist Book “The Princess and the Frog” by June Ashmore
“Hunter’s Niche” and “The Wild” by Clark Barkley
“To Thine Own Self be True” by Jay Haley
“Not Funny” Ten-Minute Play Festiva
Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial
Importance: Ischemic cold storage (ICS) of livers for transplant is associated with serious posttransplant complications and underuse of liver allografts.
Objective: To determine whether portable normothermic machine perfusion preservation of livers obtained from deceased donors using the Organ Care System (OCS) Liver ameliorates early allograft dysfunction (EAD) and ischemic biliary complications (IBCs).
Design, Setting, and Participants: This multicenter randomized clinical trial (International Randomized Trial to Evaluate the Effectiveness of the Portable Organ Care System Liver for Preserving and Assessing Donor Livers for Transplantation) was conducted between November 2016 and October 2019 at 20 US liver transplant programs. The trial compared outcomes for 300 recipients of livers preserved using either OCS (n = 153) or ICS (n = 147). Participants were actively listed for liver transplant on the United Network of Organ Sharing national waiting list.
Interventions: Transplants were performed for recipients randomly assigned to receive donor livers preserved by either conventional ICS or the OCS Liver initiated at the donor hospital.
Main Outcomes and Measures: The primary effectiveness end point was incidence of EAD. Secondary end points included OCS Liver ex vivo assessment capability of donor allografts, extent of reperfusion syndrome, incidence of IBC at 6 and 12 months, and overall recipient survival after transplant. The primary safety end point was the number of liver graft-related severe adverse events within 30 days after transplant.
Results: Of 293 patients in the per-protocol population, the primary analysis population for effectiveness, 151 were in the OCS Liver group (mean [SD] age, 57.1 [10.3] years; 102 [67%] men), and 142 were in the ICS group (mean SD age, 58.6 [10.0] years; 100 [68%] men). The primary effectiveness end point was met by a significant decrease in EAD (27 of 150 [18%] vs 44 of 141 [31%]; P = .01). The OCS Liver preserved livers had significant reduction in histopathologic evidence of ischemia-reperfusion injury after reperfusion (eg, less moderate to severe lobular inflammation: 9 of 150 [6%] for OCS Liver vs 18 of 141 [13%] for ICS; P = .004). The OCS Liver resulted in significantly higher use of livers from donors after cardiac death (28 of 55 [51%] for the OCS Liver vs 13 of 51 [26%] for ICS; P = .007). The OCS Liver was also associated with significant reduction in incidence of IBC 6 months (1.3% vs 8.5%; P = .02) and 12 months (2.6% vs 9.9%; P = .02) after transplant.
Conclusions and Relevance: This multicenter randomized clinical trial provides the first indication, to our knowledge, that normothermic machine perfusion preservation of deceased donor livers reduces both posttransplant EAD and IBC. Use of the OCS Liver also resulted in increased use of livers from donors after cardiac death. Together these findings indicate that OCS Liver preservation is associated with superior posttransplant outcomes and increased donor liver use.
Trial Registration: ClinicalTrials.gov Identifier: NCT02522871
Bi-allelic TTI1 variants cause an autosomal-recessive neurodevelopmental disorder with microcephaly.
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex
Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers
Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r2= 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 × 10-9for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 × 10-8for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women