85 research outputs found

    User Experiences of Development of Dependence on the Synthetic Cannabinoids, 5f-AKB48 and 5F-PB-22, and Subsequent Withdrawal Syndromes

    Get PDF
    Emergence of synthetic cannabinoids (SCBs) in herbal smoking mixtures is a public health concern. New SCB’s such as 5f-AKB48 and 5F-PB-22 have been detected in French seizures and in sudden death post mortems in the US. The aim was to describe development of dependence on herbal smoking mixtures containing the SCB’s, 5f-AKB48 and 5F-PB-22 and subsequent withdrawal syndromes. Dependent users of herbal smoking mixtures known to contain the SCB’s 5f-AKB48 and 5F-PB-22 with an average Severity of Dependence Score (SDS) of 13 were interviewed using a structured guide (three males/three females). Narratives were analysed using the Empirical Phenomenological Psychological (EPP) five step method. Six themes with 68 categories emerged from the analysis. Themes are illustrated as 1) Networks and Product Availability; 2) Drivers and Motives for Use; 3) Effect and Pathways toward Dependence; 4) Poly Substance Use and Comparisons to Natural Cannabis; 5) Dependence and Withdrawal and 6) Self-detoxification Attempts. Two higher levels of abstraction above these theme-levels emerged from the data, with sole use of herbal smoking mixtures containing 5f-AKB48 and 5F-PB-22 centering on the interplay between intense cravings, compulsive all-consuming seeking, use and re-dose behaviours, and fear of the psychiatric and self-harms caused when in withdrawal. This is the first study describing dependence and withdrawal experiences in users dependent on 5f-AKB48 and 5F-PB-22. Given the potential for adverse psychiatric and physical consequences of dependent use, further development of specific clinical responses and clinical research around toxicity and withdrawal severity are warranted

    Health and social problems associated with recent Novel Psychoactive Substance (NPS) use amongst marginalised, nightlife and online users in six European countries.

    Get PDF
    Continued diversification and use of new psychoactive substances (NPS) across Europe remains a public health challenge. The study describes health and social consequences of recent NPS use as reported in a survey of marginalised, nightlife and online NPS users in the Netherlands, Hungary, Portugal, Ireland, Germany and Poland (n = 3023). Some respondents were unable to categorise NPS they had used. Use of ‘herbal blends’ and ‘synthetic cannabinoids obtained pure’ was most reported in Germany, Poland and Hungary, and use of ‘branded stimulants’ and ‘stimulants/empathogens/nootropics obtained pure’ was most reported in the Netherlands. Increased heart rate and palpitation, dizziness, anxiety, horror trips and headaches were most commonly reported acute side effects. Marginalised users reported substantially more acute side effects, more mid- and long-term mental and physical problems, and more social problems. Development of country-specific NPS awareness raising initiatives, health and social service needs assessments, and targeted responses are warranted

    NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. / Methods: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. / Results: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. / Conclusion: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic–atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    Get PDF
    Rowena F. Stern is with University of British Columbia, Ales Horak is with University of British Columbia, Rose L. Andrew is with University of British Columbia, Mary-Alice Coffroth is with State University of New York at Buffalo, Robert A. Andersen is with the Bigelow Laboratory for Ocean Sciences, Frithjof C. KĂŒpper is with the Scottish Marine Institute, Ian Jameson is with CSIRO Marine and Atmospheric Research, Mona Hoppenrath is with the German Center for Marine Biodiversity Research, BenoĂźt VĂ©ron is with University of Caen Lower Normandy and the National Institute for Environmental Studies, Fumai Kasai is with the National Institute for Environmental Studies, Jerry Brand is with UT Austin, Erick R. James is with University of British Columbia, Patrick J. Keeling is with University of British Columbia.Background -- Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings -- In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance -- COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.This project was funded by Genome Canada and the Canadian Barcode of Life Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission
    • 

    corecore