144 research outputs found

    Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design

    Get PDF
    Background: Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective: The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods: A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results: Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions: Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC

    The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

    Get PDF
    The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms

    Turbot reovirus (SMReV) genome encoding a FAST protein with a non-AUG start site

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A virus was isolated from diseased turbot <it>Scophthalmus maximus </it>in China. Biophysical and biochemical assays, electron microscopy, and genome electrophoresis revealed that the virus belonged to the genus <it>Aquareovirus</it>, and was named <it>Scophthalmus maximus </it>reovirus (SMReV). To the best of our knowledge, no complete sequence of an aquareovirus from marine fish has been determined. Therefore, the complete characterization and analysis of the genome of this novel aquareovirus will facilitate further understanding of the taxonomic distribution of aquareovirus species and the molecular mechanism of its pathogenesis.</p> <p>Results</p> <p>The full-length genome sequences of SMReV were determined. It comprises eleven dsRNA segments covering 24,042 base pairs and has the largest S4 genome segment in the sequenced aquareoviruses. Sequence analysis showed that all of the segments contained six conserved nucleotides at the 5' end and five conserved nucleotides at the 3' end (5'-GUUUUA ---- UCAUC-3'). The encoded amino acid sequences share the highest sequence identities with the respective proteins of aquareoviruses in species group <it>Aquareovirus </it>A. Phylogenetic analysis based on the major outer capsid protein VP7 and RNA-dependent RNA polymerase were performed. Members in <it>Aquareovirus </it>were clustered in two groups, one from fresh water fish and the other from marine fish. Furthermore, a fusion associated small transmembrane (FAST) protein NS22, which is translated from a non-AUG start site, was identified in the S7 segment.</p> <p>Conclusions</p> <p>This study has provided the complete genome sequence of a novel isolated aquareovirus from marine fish. Amino acids comparison and phylogenetic analysis suggested that SMReV was a new aquareovirus in the species group <it>Aquareovirus </it>A. Phylogenetic analysis among aquareoviruses revealed that VP7 could be used as a reference to divide the aquareovirus from hosts in fresh water or marine. In addition, a FAST protein with a non-AUG start site was identified, which partially contributed to the cytopathic effect caused by the virus infection. These results provide new insights into the virus-host and virus-environment interactions.</p

    The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic Memory

    Get PDF
    Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks

    Neural Mechanisms of Interference Control in Working Memory: Effects of Interference Expectancy and Fluid Intelligence

    Get PDF
    A critical aspect of executive control is the ability to limit the adverse effects of interference. Previous studies have shown activation of left ventrolateral prefrontal cortex after the onset of interference, suggesting that interference may be resolved in a reactive manner. However, we suggest that interference control may also operate in a proactive manner to prevent effects of interference. The current study investigated the temporal dynamics of interference control by varying two factors - interference expectancy and fluid intelligence (gF) - that could influence whether interference control operates proactively versus reactively.A modified version of the recent negatives task was utilized. Interference expectancy was manipulated across task blocks by changing the proportion of recent negative (interference) trials versus recent positive (facilitation) trials. Furthermore, we explored whether gF affected the tendency to utilize specific interference control mechanisms. When interference expectancy was low, activity in lateral prefrontal cortex replicated prior results showing a reactive control pattern (i.e., interference-sensitivity during probe period). In contrast, when interference expectancy was high, bilateral prefrontal cortex activation was more indicative of proactive control mechanisms (interference-related effects prior to the probe period). Additional results suggested that the proactive control pattern was more evident in high gF individuals, whereas the reactive control pattern was more evident in low gF individuals.The results suggest the presence of two neural mechanisms of interference control, with the differential expression of these mechanisms modulated by both experimental (e.g., expectancy effects) and individual difference (e.g., gF) factors

    Conceptualising technology enhanced destination experiences

    Get PDF
    The notion of creating rich and memorable experiences for consumers constitutes a prevalent concept in the tourism industry. With the proliferation of destination choices and increasing competition, it has become critical for destinations to find innovative ways to differentiate their products and create experiences that provide distinct value for the tourist. However, currently two major paradigm shifts are drastically changing the nature of experiences, the understanding of which is crucial for destinations to create successful experiences in the future. Experiences are transforming as (a) consumers now play an active part in co-creating their own experiences and (b) technology is increasingly mediating experiences. Despite the amount of literature recognising the impact of technology on experiences, a holistic conceptualisation of this change is missing. This paper thus raises the need to conflate the two-fold paradigm shift and calls for new reflections on the creation of experiences. The aim is to explore technology as a source of innovation to co-create enhanced destination experiences. The paper contributes on three levels: by introducing and conceptualising a new experience creation paradigm entitled Technology Enhanced Destination Experiences, by proposing an extended destination experience co-creation space in the pre/during/post phases of travel and by discussing managerial implications of this development for the future creation and management of experiences in a destination context. © 2012 Elsevier Ltd

    Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition

    Get PDF
    The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate – in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    Get PDF
    We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system

    The Alvarado score for predicting acute appendicitis: a systematic review

    Get PDF
    Background: The Alvarado score can be used to stratify patients with symptoms of suspected appendicitis; the validity of the score in certain patient groups and at different cut points is still unclear. The aim of this study was to assess the discrimination (diagnostic accuracy) and calibration performance of the Alvarado score. Methods: A systematic search of validation studies in Medline, Embase, DARE and The Cochrane library was performed up to April 2011. We assessed the diagnostic accuracy of the score at the two cut-off points: score of 5 (1 to 4 vs. 5 to 10) and score of 7 (1 to 6 vs. 7 to 10). Calibration was analysed across low (1 to 4), intermediate (5 to 6) and high (7 to 10) risk strata. The analysis focused on three sub-groups: men, women and children. Results: Forty-two studies were included in the review. In terms of diagnostic accuracy, the cut-point of 5 was good at 'ruling out' admission for appendicitis (sensitivity 99% overall, 96% men, 99% woman, 99% children). At the cut-point of 7, recommended for 'ruling in' appendicitis and progression to surgery, the score performed poorly in each subgroup (specificity overall 81%, men 57%, woman 73%, children 76%). The Alvarado score is well calibrated in men across all risk strata (low RR 1.06, 95% CI 0.87 to 1.28; intermediate 1.09, 0.86 to 1.37 and high 1.02, 0.97 to 1.08). The score over-predicts the probability of appendicitis in children in the intermediate and high risk groups and in women across all risk strata. Conclusions: The Alvarado score is a useful diagnostic 'rule out' score at a cut point of 5 for all patient groups. The score is well calibrated in men, inconsistent in children and over-predicts the probability of appendicitis in women across all strata of risk
    corecore