339 research outputs found

    Impact of Age and Body Site on Adult Female Skin Surface pH

    Get PDF
    Background: pH is known as an important parameter in epidermal barrier function and homeostasis. Aim: The impact of age and body site on skin surface pH (pH(SS)) of women was evaluated in vivo. Methods: Time domain dual lifetime referencing with luminescent sensor foils was used for pH(SS) measurements. pH(SS) was measured on the forehead, the temple, and the volar forearm of adult females (n = 97, 52.87 +/- 18.58 years, 20-97 years). Every single measurement contained 2,500 pH values due to the luminescence imaging technique used. Results: pH(SS) slightly increases with age on all three investigated body sites. There are no significant differences in pH(SS) between the three investigated body sites. Conclusion: Adult pH(SS) on the forehead, the temple and the volar forearm increases slightly with age. This knowledge is crucial for adapting medical skin care products. Copyright (C) 2012 S. Karger AG, Base

    The role of the RACK1 ortholog Cpc2p in modulating pheromone-induced cell cycle arrest in fission yeast

    Get PDF
    The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to GÎČ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3â€Č-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Congenital Hypothyroidism Long‐Term Follow‐up Project: Navigating the Rough Waters of a Multi‐Center, Multi‐State Public Health Project

    Get PDF
    The Region 4 Midwest Genetics Collaborative, made up of seven regional states (Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio, and Wisconsin), brought together pediatric endocrinologists, state laboratory experts, public health follow‐up specialists, and parents of children with congenital hypothyroidism (CH) to identify the three‐year follow‐up management and education patterns of primary care clinicians and pediatric endocrinologists in the care of children diagnosed with CH by state newborn screening (NBS) programs. Among a number of challenges, each state had different NBS methods, data systems, public health laws, and institutional review board (IRB) requirements. Furthermore, the diagnosis of CH was complicated by the timing of the NBS sample, the gestational age, weight, and co‐morbidities at delivery. There were 409 children with CH identified through NBS in 2007 in the seven state region. The clinician of record and the parents of these children were invited to participate in a voluntary survey. Approximately 64 % of clinician surveys were collected with responses to questions relating to treatment, monitoring practices, educational resources, genetic counseling, and services provided to children with confirmed CH and their families. Nearly one‐quarter (24 %) of parents surveyed responded to questions relating to treatment, education, genetic counseling, resources, and services they received or would like to receive. De‐identified data from six of the seven states were compiled for analysis, with one state being unable to obtain IRB approval within the study timeline. The data from this collaborative effort will improve state follow‐up programs and aid in developing three‐year follow‐up guidelines for children diagnosed with CH. To aid in the facilitation of similar public health studies, this manuscript highlights the challenges faced, and focuses on the pathway to a successful multi‐state public health endeavor.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147153/1/jgc40464.pd

    A Step Towards Seascape Scale Conservation: Using Vessel Monitoring Systems (VMS) to Map Fishing Activity

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Conservation of marine ecosystems will require a holistic understanding of fisheries with concurrent spatial patterns of biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: Using data from the UK Government Vessel Monitoring System (VMS) deployed on UK-registered large fishing vessels we investigate patterns of fisheries activity on annual and seasonal scales. Analysis of VMS data shows that regions of the UK European continental shelf (i.e. Western Channel and Celtic Sea, Northern North Sea and the Goban Spur) receive consistently greater fisheries pressure than the rest of the UK continental shelf fishing zone. CONCLUSIONS/SIGNIFICANCE: VMS provides a unique and independent method from which to derive patterns of spatially and temporally explicit fisheries activity. Such information may feed into ecosystem management plans seeking to achieve sustainable fisheries while minimising putative risk to non-target species (e.g. cetaceans, seabirds and elasmobranchs) and habitats of conservation concern. With multilateral collaboration VMS technologies may offer an important solution to quantifying and managing ecosystem disturbance, particularly on the high-seas.MJW is supported by a Natural Environment Research Council PhD studentship (NER/S/A/2004/12980) at the University of Exeter (Cornwall Campus). BJG receives funding from the European Social Fund

    Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Get PDF
    International audienceAbstract: Aims: to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) using Cardiac Magnetic Resonance (CMR). Methods: We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level >= 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP), providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE), reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results: Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and < 0.001), multivessel disease (p = 0.02 for both) and hyperglycemia (p < 0.001). Moreover, they were characterized by higher levels of HbA(1c) (p = 0.01 and 0.04), peak plasma Creatine Kinase (p < 0.001), left ventricular end-systolic volume (p = 0.005 and < 0.001), and lower left ventricular ejection fraction (p = 0.001 and < 0.001). In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion: Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR

    Relationships between psychosocial outcomes in adolescents who are obese and their parents during a multi-disciplinary family-based healthy lifestyle intervention: One-year follow-up of a waitlist controlled trial (Curtin University's Activity, Food and Attitudes Program)

    Get PDF
    Background: Limited studies have investigated relationships in psychosocial outcomes between adolescents who are obese and their parents and how psychosocial outcomes change during participation in a physical activity and healthy eating intervention. This study examined both adolescent and parent psychosocial outcomes while participating in a one - year multi-disciplinary family-based intervention: Curtin University’s Activity, Food, and Attitudes Program (CAFAP). Methods: Following a waitlist control period, the intervention was delivered to adolescent (n = 56, ages 11–16) and parent participants over 8 weeks, with one-year maintenance follow-up. Adolescent depression and quality of life, family functioning, and parent depression, anxiety, and stress were assessed at six time points: baseline and prior to intervention (e.g., waitlist control period), immediately following intervention, and at 3, 6, and 12 months post-intervention. Relationships between adolescent and parent psychosocial outcomes were assessed using Spearman correlations and changes in both adolescent and parent outcomes were assessed using linear mixed models. Changes in adolescent psychosocial outcomes were compared to changes in behavioural (physical activity and healthy eating) and physical (weight) outcomes using independent samples t-tests.Results: The majority of psychosocial outcomes were significantly correlated between adolescents and parents across the one-year follow-up. Adolescent depression, psychosocial and physical quality of life outcomes significantly improved before or following intervention and were maintained at 6-months or one-year follow-up. Parent symptoms of depression, anxiety, and stress were reduced during waitlist and primarily remained improved. Changes in adolescent psychosocial outcomes were shown to be partially associated with behavioural changes and independent of physical changes. Conclusions: Adolescents in CAFAP improved psychosocial and physical quality of life and reversed the typical trajectory of depressive symptoms in adolescents who are obese during a one-year maintenance period. CAFAP was also effective at maintaining reductions in parent symptoms of depression, anxiety, and stress demonstrated during the waitlist period. Trial Registration: The trial was registered with the Australian and New Zealand Clinical Trials Registry (No. 12611001187932)

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication
    • 

    corecore