209 research outputs found
Clostridium difficile infection in an endemic setting in the Netherlands
The purpose of this investigation was to study risk factors for Clostridium difficile infection (CDI) in an endemic setting. In a 34-month prospective case–control study, we compared the risk factors and clinical characteristics of all consecutively diagnosed hospitalised CDI patients (n = 93) with those of patients without diarrhoea (n = 76) and patients with non-CDI diarrhoea (n = 64). The incidence of CDI was 17.5 per 10,000 hospital admissions. C. difficile polymerase chain reaction (PCR) ribotype 014 was the most frequently found type (15.9%), followed by types 078 (12.7%) and 015 (7.9%). Independent risk factors for endemic CDI were the use of second-generation cephalosporins, previous hospital admission and previous stay at the intensive care unit (ICU). The use of third-generation cephalosporins was a risk factor for diarrhoea in general. We found no association of CDI with the use of fluoroquinolones or proton pump inhibitors (PPIs). The overall 30-day mortality among CDI patients, patients without diarrhoea and patients with non-CDI diarrhoea was 7.5%, 0% and 1.6%, respectively. In this endemic setting, risk factors for CDI differed from those in outbreak situations. Some risk factors that have been ascribed to CDI earlier were, in this study, not specific for CDI, but for diarrhoea in general. The 30-day mortality among CDI patients was relatively high
Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models
Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
The Pneumococcal Serine-Rich Repeat Protein Is an Intra-Species Bacterial Adhesin That Promotes Bacterial Aggregation In Vivo and in Biofilms
The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273–341 located in the Basic Region (BR) domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (r)BR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122–166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs) of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae) may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection
Towards a Wolbachia Multilocus Sequence Typing system : discrimination of Wolbachia strains present in Drosophila species
Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Current Microbiology 53 (2006): 388-395, doi:10.1007/s00284-006-0054-1.Among the diverse maternally inherited symbionts in arthropods, Wolbachia are the most common and infect over 20% of all species. In a departure from traditional genotyping or phylogenetic methods relying on single Wolbachia genes, the present study represents an initial Multilocus Sequence Typing (MLST) analysis to discriminate closely related Wolbachia pipientis strains, and additional data on sequence diversity in Wolbachia. We report new phylogenetic characterization of four genes (aspC, atpD, sucB and pdhB), and provide an expanded analysis of markers described in previous studies (16S rDNA, ftsZ, groEL, dnaA and gltA). MLST analysis of the bacterial strains present in sixteen different Drosophila-Wolbachia associations detected four distinct clonal complexes that also corresponded to maximum-likelihood identified phylogenetic clades. Among the sixteen associations analyzed, six could not be assigned to MLST clonal complexes and were also shown to be in conflict with relationships predicted by maximum-likelihood phylogenetic inferences. The results demonstrate the discriminatory power of MLST for identifying strains and clonal lineages of Wolbachia and provide a robust foundation for studying the ecology and evolution of this widespread endosymbiont.This work was partially supported by intramural funds of the University of Ioannina to K. Bourtzis, by grants to J.J. Wernegreen from the National Institutes of Health (R01 GM62626-01) and the NASA Astrobiology Institute (NNA04CC04A), and to J.H. Werren and J.J. Wernegreen from the National Science Foundation (EF-0328363)
Enriched Environment Experience Overcomes Learning Deficits and Depressive-Like Behavior Induced by Juvenile Stress
Mood disorders affect the lives and functioning of millions each year. Epidemiological studies indicate that childhood trauma is predominantly associated with higher rates of both mood and anxiety disorders. Exposure of rats to stress during juvenility (JS) (27–29 days of age) has comparable effects and was suggested as a model of induced predisposition for these disorders. The importance of the environment in the regulation of brain, behavior and physiology has long been recognized in biological, social and medical sciences. Here, we studied the effects of JS on emotional and cognitive aspects of depressive-like behavior in adulthood, on Hypothalamic-Pituitary-Adrenal (HPA) axis reactivity and on the expression of cell adhesion molecule L1 (L1-CAM). Furthermore, we combined it with the examination of potential reversibility by enriched environment (EE) of JS – induced disturbances of emotional and cognitive aspects of behavior in adulthood. Three groups were tested: Juvenile Stress –subjected to Juvenile stress; Enriched Environment – subjected to Juvenile stress and then, from day 30 on to EE; and Naïves. In adulthood, coping and stress responses were examined using the elevated plus-maze, open field, novel setting exploration and two way shuttle avoidance learning. We found that, JS rats showed anxiety- and depressive-like behaviors in adulthood, altered HPA axis activity and altered L1-CAM expression. Increased expression of L1-CAM was evident among JS rats in the basolateral amygdala (BLA) and Thalamus (TL). Furthermore, we found that EE could reverse most of the effects of Juvenile stress, both at the behavioral, endocrine and at the biochemical levels. The interaction between JS and EE resulted in an increased expression of L1-CAM in dorsal cornu ammonis (CA) area 1 (dCA1)
Angiogenesis in Differentiated Placental Multipotent Mesenchymal Stromal Cells Is Dependent on Integrin α5β1
Human placental multipotent mesenchymal stromal cells (hPMSCs) can be isolated from term placenta, but their angiogenic ability and the regulatory pathways involved are not known. hPMSCs were shown to express integrins αv, α4, α5, β1, β3, and β5 and could be induced to differentiate into cells expressing endothelial markers. Increases in cell surface integrins α5 and β1, but not α4, αvβ3, or αvβ5, accompanied endothelial differentiation. Vascular endothelial growth factor-A augmented the effect of fibronectin in enhancing adhesion and migration of differentiated hPMSC through integrin α5β1, but not αvβ3 or αvβ5. Formation of capillary-like structures in vitro from differentiated cells was inhibited by pre-treatment with function-blocking antibodies to integrins α5 and β1. When hPMSCs were seeded onto chick chorioallantoic membranes (CAM), human von Willebrand factor-positive cells were observed to engraft in the chick endothelium. CAMs transplanted with differentiated hPMSCs had a greater number of vessels containing human cells and more incorporated cells per vessel compared to CAMs transplanted with undifferentiated hPMSCs, and overall angiogenesis was enhanced more by the differentiated cells. Function-blocking antibodies to integrins α5 and β1 inhibited angiogenesis in the CAM assay. These results suggest that differentiated hPMSCs may contribute to blood vessel formation, and this activity depends on integrin α5β1
The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-Forming Region
This is the final version. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the POL-2 850 um linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex
from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects towards higher density regions of the cloud. We then use the polarization data at 850 um to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs North-South across most of the cloud, with the exception of B1-c where it turns more East-West. From the dispersion of polarization angles, we calculate a turbulence correlation length of 5.0 +/- 2.5 arcsec (1500 au), and a turbulent-to-total magnetic energy ratio
of 0.5 +/- 0.3 inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH3
molecular lines from the Green Bank Ammonia Survey (GAS) to estimate the strength of the plane-of-sky component
of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of 120 +/- 60 uG
and a criticality criterion lambda_c = 3.0 +/- 1.5, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.National Research Foundation of Korea (NRF)National Key R&D Program of ChinaNational Natural Science Foundation of China (NSFC
- …