70 research outputs found

    Validity of numerical trajectories in the synchronization transition of complex systems

    Full text link
    We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown {\it via} unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same non-hyperbolic properties.Comment: 4 pages, 4 figure

    On the constraints violation in forward dynamics of multibody systems

    Get PDF
    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Exploring the link between pholcodine exposure and neuromuscular blocking agent anaphylaxis

    No full text
    Neuromuscular blocking agents (NMBAs) are the most commonly implicated drugs in IgE-mediated anaphylaxis during anaesthesia that can lead to perioperative morbidity and mortality. The rate of NMBA anaphylaxis shows marked geographical variation in patients who have had no known prior exposure to NMBAs, suggesting that there may be external or environmental factors that contribute to the underlying aetiology and pathophysiology of reactions. Substituted ammonium ions are shared among NMBAs and are therefore thought to be the main allergenic determinant of this class of drugs. Substituted ammonium ions are found in a wide variety of chemical structures, including prescription medications, over-the-counter medications and common household chemicals, such as the quaternary ammonium disinfectants. Epidemiological studies have shown parallels in the consumption of pholcodine, a nonprescription antitussive drug which contains a tertiary ammonium ion, and the incidence of NMBA anaphylaxis. This link has prompted the withdrawal of pholcodine in some countries, with an ensuing fall in the observed rate of NMBA anaphylaxis. While such observations are compelling in their suggestion of a relationship between pholcodine exposure and NMBA hypersensitivity, important questions remain regarding the mechanisms by which pholcodine is able to sensitize against NMBAs and whether there are other, as yet unidentified, agents that can elicit similar hypersensitivity reactions. This review aims to explore the evidence linking pholcodine exposure to NMBA hypersensitivity and discuss the implications for our understanding of the pathophysiology of these reactions
    corecore